

Chemical Anchoring 2024

Chemfix UK Fix Pro CH+MAX 410 ML Pure Vinylester Styrene free

Chemical Anchoring Injection System

HEALTH AND SAFETY

HANDLING AND STORAGE: Store in dry conditions away from direct sunlight between +5°C and +25°C.

ENVIRONMENTAL CARE: Please do not dispose of uncured material. If disposing please mix any waste product to its cured state.

410mle

BATCH CODE / DATE OF EXPIRY

Chemfix Product Limited

Mill Street East Dewsbury

Tel:+44 (0) 1924 453886

Fax: +44 (0) 1924 431658

Emergency +44 (0) 1924 431679

United Kingdom

West Yorkshire WF12 9BQ

UK: COMP A- Contains: 2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRYLATE, METHACRYLIC ACID, UK: COMP A- Cortains: 22-21Fmt2ReEGIONDETIN: DMRTHAGENATE, METHAGENATE, MONDESTER WITH MONENE,12-JOID, ERATION MASS 6-22-401-METHAPRINYUMMORISETTANIO. AND ETHANIO.212/21-241980X0TEMOV[ETHI0](JA-METHAPENIVUMMOR)HBIT: Majoraute an allegic danifhumgjalmah yapanylapang 7264- Wash hards, forsona e yei intrakon. P361- Acad betafting danifhumgjalmah yapanylapang 7264- Wash hards, forsona e yei maton. P361- Mark danifer J771-gene protector, for performance of the second sec P302+P352- IF ON SKIN: Wash with plenty of soap and water.

DE: COMP A- Enthält: 2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRYLATE, METHACRYLIC ACID, MONOSETRE WITH PROMINE 1,2/2 EITHEREDUKTORITHE UNIGETHIKEUNG MUCH MONOSETRE WITH PROMINE 1,2/0/0, REACTION MASS OF 2,2/1(4/METH/MEHVIJIMINO)E AND EITHANOL 2,1[2/2,4/MBOXYETHOXYETHIX](4/METH/BHENJJMINO), H317- Kann allergische Hautreaktionen verursachen, H319- Verursacht schwere Augenreizung, P261- Einatmen von Saud/Bauch/SayNebel/Dampf/Aerosol vermeiden, P264- Nach Gebrauch die Hände, Unterarme und das Jacob Neocry Galy receiption pp/Activate recine being r 244 - Nacio debiaduti die name, Oniceanne una uas Gesicht gründlich waschen, P227. Kontaminierte Arbeitskleidung nicht außerhalb die Arbeitsplateitus tragen, P280 - Schutzkleidung, Augenschutz, Gesichtsschutz tragen, P302+P352. BEI BRÜHRUNG MIT DER HAUT: Mit viel Wasser und Seife waschen, P306+P351-P338. BEI KONTAKT MIT DR Außers. Einige Minuten lang behutsam mit Wasser spülen. Eventuell vorhandene Kontaktlinsen nach Möglichkeit entfernen. Weite spülen, COMP B- Enthält: BENZOYLPEROXID. H317- Kann allereische Hautreaktionen verursachen. H319 Verursacht schwere Augenreizung, H412- Schädich für Wasserorganismen, mit angefreitung i Verursacht schwere Augenreizung, H412- Schädich für Wasserorganismen, mit fristiger Wirkung, P261 - Einatmen von Staub/Rauch/Gas/Nebe//Dampf/Aerosol vermeiden, P264 - Nach Gebrauch die Hände, Unterarme und das Gesicht gründlich waschen, P272- Kontaminierte Arbeitsbelidung nicht ausgehanlab des Arbeitsplatzes tragen, P273 - Freisetzung in die Umwelt vermeiden, P280 - Schutzkleidung, Augenschutz, Gesichtsschutz tragen, P302+P352 - BEI BERÜHRUNG MIT DER HAUT: Mit viel Wasser und Seife waschen.

TR: comp A-ligent: 2,2-EthyleneDioxydieThyl DiMETHACRYLATE, METHACRYLC ACID, MONOESTER WITH PROPANE 1,2-DIOL, REACTION MASS OF 2,2-[[4-METHYLPHENVL]MIMO]BISETHANOL AND ETHANOL 2-[[2](2+LYURGXXETHOXY)ETHYL][4-METHYLPHENVL]MIMO]BISETHANOL AND ETHANOL 2-[[2](2+LYURGXXETHOXY)ETHYL][4-METHYLPHENVL]MIMO]BISETHANOL AND ETHANOL 2-1212-CHTINKUKE HUM2)F IHTUJE-NE IHTUFENTUJANINU-1531 - Metrijk Gin reaksynnamia via agalini, H319 - Gidi gizi zharinjen voj araz, PGA i TozurujUnamni/gzarujisinju/bahami/sprevijsi solumaktan kapnin p264 - Bilogłemeden sonra elleri, kollarve vjužu ijvice vikavni p727 - Krilennis kvjetefleri isveri dyna gikarmanin, P280- konzyucu kvjafet, gizi konzyucu, vizi konzyucu kullanin, P302+P352 - DENI lie TEMAS HAI/IND: Els: Eol sabun ve su lie ykavni, P305+P351+P338 - GOZ I.LE TEMASI HAI/IND: Su ie bila Et ad Kasti dikkatlice durulayın. Taklı ve yapması kolaysa, kontak lensleri çıkartın. Durulamaya devam edin. COMP 8-Içenr: DIBENZO'I (FENOXIDE. H317- Alerji cilt reaksyonlarına yol açabilir, H319- Ciddi göz tahrişme yol açar. H412- Sucul ortanda zuru süre kalıcı, zararıl ekel, 2621- Tozuruy'dumanın(gazın/sisin/buhanın/spreyin solumaktan kaçının, P264- Elleçlemeden sonra elleri, kolları ve yüzü iyice yılayın, P272- Kirlenmi kiyaletleri işyeri dışına çıkarmayın, P273- Çevreye verilmesinden kaçının, P280- koruyucu kıyafet, göz koruyucu, yüz koruyucu kullanın, P302+P352- DERİL LE TEMBA HALINDE (SE: Bol sabun ve su ile yıkayın.

DESCRIPTION

CH+ anchor mortar is a two-part chemical anchoring system based on a high reactivity vinylester resin. ETA approved. Suitable for corrosion resistance and damp applications.

GEL & CURE TIMES

Temp *C	- 10*	-5	5	15	25	35
Gel (mins)	50	40	20	9	5	3
Cure (mins)	240	180	90	60	30	20

* resin temp must be 20°C

Thorough hole cleaning prior to installation is vital to the performance of the fixing.

35373K

Friday, April 28, 2023

To Whom it may concern EGE MAKINE VE TEKNIK LTD Kurekciler Caddesi No 52/2 Karakoy – Istanbul Turkey

To Whom it may concern.

Ref:- CHEMFIX CH+ New Improved Version CH+ MAX

This letter is to confirm that Chemfix Products Limited (UK) is the supplier of EGE MAKINE VE TEKNIK LTD, Turkey. The company has supplied EGE MAKINE VE TEKNIK LTD products FIX PRO CHEMICAL ANCHOR RESIN CH+ 410.

Chemfix Products Ltd is a UK manufacturer and is authorized to mark products with the ETA & CE marking by the European Notify Body 1404 – ZAG Dimičeva ulica 12, SI 1000 Ljubljana, Slovenia http://www.zag.si

The most recently delivered batch of Chemfix CH+ is batch 1435341d 03/24 is the new improved Chemfix resin, replacement for CH+ called CH+ MAX.

This is signified by the ETA approvals on the side of the labels three types mentioned CH+ MAX.

On this delivery, the product name FIX PRO CH+ has not been updated, however on all future deliveries of this product, the product name shall be FIX PRO CH+ MAX.

Yours sincerely

Urs Joos Commercial and Marketing Director Chemfix Products Limited

Chemfix Products Limited Mill Street East · Dewsbury West Yorkshire WF12 9BQ · UK Phone +44 (0) 1924 453886 Fax +44 (0) 1924 431658 e-mail: info@chemfix.co.uk www.chemfix.co.uk

Certificate of Registration

Chemfix Products Ltd

Mill Street East, Dewsbury, West Yorkshire, WF12 9BQ

Operate a management system that complies with the requirements of

ISO 9001:2015

With the scope:

The development, manufacture and supply of polymer based repair and maintenance compounds, adhesives and surface coatings.

EA Code: 12 & 29

Certificate No. QS 1634

Originally Registered:	6 th October 1994
Registered by WQA:	21 st December 2006
Re-Certification:	31 st December 2026
Latest Issue:	13th December 2023

ehalf of WQA

Validity of this certificate can be checked by contacting: Worldwide Quality Assurance Ltd Portland House, Belmont Business Park, Durham, DH1 1TW www.worldwidega.com

This certificate remains the property of Worldwide Quality Assurance Ltd and must be returned on request.

Certificate of Registration

Chemfix Products Ltd

Mill Street East, Dewsbury, West Yorkshire, WF12 9BQ

Operate a management system that complies with the requirements of

ISO 14001:2015

With the scope:

The development, manufacture and supply of polymer based repair and maintenance compounds, adhesives and surface coatings.

EA Code: 12 & 29

Certificate No. EMS 2865

Originally Registered:	14 th December 2010
Registered by WQA:	14 th December 2010
Re-Certification:	31 st December 2026
Latest Issue:	13th December 2023

ehalf of WQA Signed

Validity of this certificate can be checked by contacting: Worldwide Quality Assurance Ltd Portland House, Belmont Business Park, Durham, DH1 1TW www.worldwideqa.com

This certificate remains the property of Worldwide Quality Assurance Ltd and must be returned on request.

CH+ MAX

Chemical Anchor RESIN

A two component chemical anchoring injection system. A formulation derived from vinylester resin with high bond strength, developed principally to anchor threaded rods into concrete. Used widely for medium to high loads in both horizontal and vertical applications.

• CHARACTERISTICS

- \cdot Suitable for high loads within standard annulus and embedments.
- \cdot Fast working times for early loading in time sensitive applications.
- \cdot No styrene allows for use indoors and in enclosed spaces.
- \cdot Use in wet or damp environments and fixing holes.
- · Good durability formulation, resistance to chemicals.
- \cdot Approved for studs or rebar in uncracked concrete also Post Installed Rebar
- · 10:1 resin available in a variety of cartridge types.
- \cdot Fixings in concrete, wood, or other high strength materials.

• APPROVALS / CERTIFICATIONS / TESTING

- · 22/0328 ETA EAD 330499-00-0601 Threaded Rods Option 1 cracked.
- · 22/0328 ETA EAD 330499-00-0601 M8-M24 Threaded Rods 8-25mm Rebar Option 7.
- . 22/0381 ETA EAD 330076-00-0804 M6-M12 Hollow Wall / Masonry Installations.
- . 19/0102 ETA EAD EAD 330087-00-0601 Post-Installed Rebar 8-12mm.
- · CE Certified 1404-CPR-TBA ZAG, Solvenia.
- · Fire Approval in ETA
- · WRAS Approved for use with Potable drinking water* approval no. 1810574
- · LEED tested 2009 EQ c4.1 SCAQMD rule 1168 (2005.)
- · VOC A+ Rating (Volatile Organic Content)

• PHYSICAL PROPERTIES

- ·Mixed Colour Grey
- ·Density 1.56 kg/m²
- Compressive Strength 40.7 (MPa) (EN ISO 604) Tensile Strength - 7 N/mm² (EN ISO 527) Flexural Strength - 16.6 N/mm² (EN ISO 178)

• TYPICAL TENSILE PERFORMANCE - STANDARD EMBEDMENT DEPTH

Concrete, C20/2	5, 5.8 Grade Stude	ding				
Size	Recommended L	oad (kN)	Spacing (S _{cr,N})	Drill Hole Ø	Fixing Hole Ø	Setting Depth
	Tension (N _{rec})	Shear (V _{rec})	(mm)	(mm)	(mm)	(mm)
M8	9.07	5.14	160	10	9	80
M10	14.02	8.57	200	12	12	90
M12	19.71	12.00	240	14	14	110
M16	29.92	22.29	320	18	18	125
M20	48.75	34.86	400	22	22	170
M24	69.12	50.29	480	28	26	210
M30	94.25	81.43	560	35	32	280

CARTRIDGE SIZES

165ml | 300ml | 410ml 345ml | 825ml

STUDS

CH+ MAX

Chemical Anchor RESIN Styrene Free

• TYPICAL PERFORMANCE IN AERATED CONCRETE

Characteristic values of resistance under tension & shear loads for Autoclaved Aerated Concrete. Compresive strength of material fb > 6MPa Temp range -40 to +40 C degree. Vinylester ECO.														
Size	Condition :	d/d	w/w & w/d	d/d, w/w & w/d										
	H _{ef} (mm)	Tension (kN)	Tension (kN)	Shear (kN)										
M8	80	2	1.5	5										
M10	90	3	2.5	8										
M12	100	4	3.5	8										
M16	100	5.5	4.5	8										

*Note: The values are valid for steel 5.6 or greater. For steel 4.6 and 4.8 multiply VRk,b by 0,8

• CHARACTERISTIC LOADS FOR HOLLOW MASONRY

Category c: Hollow Masonry, Doppio UNI (12.12.25) Bulk density class p=0.9 kg/dm3 Minimum compressive strength f _b =6.0 MPa														
Size	Installation Param	eters				Loads								
	d Anchor Rod Ø d₀ Drill Hole Ø (mm)	Sleeve Type	Max. Ø Hole in Fixture d _{fix} (mm)	Drill Depth h ₁ (mm)	Installation Torque Moment T _{inst}	Tension Nrk (kN)	Shear Vrk (kN)							
M6	6/12	12 x 80	7	85	2	0.75	1.5							
M8	8 / 12	12 x 80	9	85	2	0.75	1.5							
M10	10/16	16 x 85	12	90	2	1.5	1.5							
M12	12/16	16 x 85	14	90	2	1.5	1.5							

WORKING AND HARDENING TIMES

Base Material Temperature	-10°C**	-5°C**	5°C	15°C	25°C	35°C
Gel Working Time	50'	40'	20'	9'	5'	3'
Curing Time Dry Concrete	240'	180'	90'	60'	30'	20'
Curing Time Wet Concrete	x 2	x 2	x 2	x 2	x 2	x 2

**Resin Temperature must be at least 20°C

• APPROVALS

CH+ MAX

Chemical Anchor RESIN Styrene Free

• INSTALLATION

For further information, refer to the technical data sheet.

• **STORAGE / SHELF** This product should be stored between +5°C & +25°C. Avoid Direct Sunlight The Shelf life of the product is 18 months from the manufacture date.

The information and data given is based on our own experience, research and testing and is believed to be reliable and accurate. However, as Chemfix Products cannot know the varied uses to which its products may be applied, or the methods of application used, no warranty as to the fitness or suitability of its products is given or implied. It is the users responsibility to determine suitability of use. For further information please contact our Technical department. Manufactured by Chemfix Products Ltd in the UK

Features and Benefits

Version 18/05/2022

- High bond strength with High load resistance
- Used with all grades of threaded rod and rebar in accordance with TR029
- Used in non-cracked and cracked concrete
- Fast gelling and curing
- Used in dry and wet concreteand flooded holes
- Used in critical or overhead applications
- Used in corrosive environments
- ETA tested based on life of anchor 50 years
- Used for post installed rebar installations under TR029 and TR023
- Used for solid and hollow masonry
- Low shrinkage enables large diameter installations
- Close edge distance and small spacing
- Manual cleaning up to 20mm diameter and embedment depths of 240mm
- Independently tested and approved

Contents

PAGE 1 - Features and Benefits

PAGE 2 - Loads, Edge and Spacings based on Characteristic bond strengths Showing steel failure PAGE 3-5 - Design Resistance of resin used with various stud strengths, material and rebar. PAGE 6 - Characteristic and Design load resistances based on characteristic bond strengths for hef 4d (minimum embedment) to 20d PAGE 7 - Bond Strength Factors PAGE 8 - Characteristic and Design load resistances for REBAR based on characteristic bond strengths for hef 4d (minimum embedment) to 20d PAGE 9 - Bond Strength Factors for REBAR PAGE 10 - Material properties for threaded rods and rebar PAGE 11 - Tension Edge and Spacing reduction factors PAGE 12-15 - Post Installed Rebar Data PAGE 16 - Curing Time / Temperature Range PAGE 17 - Installation parameters for bricks PAGE 18 - Installation parameters: drilling hole cleaning and installation

Shelf Life and Storage

This product should be stored between $+5^{\circ}C \& +25^{\circ}C$. The Shelf life of the product is 18 months from the manufacture date.

IMPORTANT The information and data given is based on our own experience, research and testing and is believed to be reliable and accurate. However, as we cannot know the varied uses to which its products may be applied, or the methods of application used, no warranty as to the fitness or suitability of its products is given or implied. It is the users responsibility to determine suitability of use. For further information please contact Our Technical Department.

Product Description

Chemfix CH+MAX is a 2 component high strength 10:1 ratio chemical anchoring resin system. It is designed as a fast curing high strength resin fixing anchor for very high loads and critical and overhead fixings

especially in corrosive environments, or damp conditions.

Available in sizes : 150/165/170/280/300ml Foil Bag 10:1, 330/345/350/825ml Side By Side and 380/400/410ml Coaxial Cartridges

Specific Benefits

- European Approved
- High loads possible

• Studs and rebar

- High chemical resistanceUse with potable water
- Styrene Free Low odour
 - Fire approved

• Cracked or Non-Cracked

• A+ Rating VOC content

- Suitable underwater
- Hammer drilling and dust free drilling

- Approvals
- ETA Option 7 acc. EAD 330499 for uncracked concrete with studs and rebar TR029
- ETA Option 1 acc. EAD 330499 for cracked concrete with studs
- ETA for post installed Rebar with fire acc. EAD 330087
- ETA for application in masonry acc. to EAD 330076
- Tested to BS6920 for use with potable water
- Tested according to LEED (VOC A+)

Loads, Edge and Spacing based on Characteristic bond strengths - Showing steel failure

	Charact Resistar	eristic Ice (kN)	Design Resis	tance (N)	Recommend	led Load (kN)	Charact	eristic dis (mm)	tances	Min Edge		Hole	Hole	
		,		,		()		(,		and Spacing	Nominal	Diameter	Diameter	Max
Size	Tension	Shear	Tension	Shear	Tension	Shear	Edge	Spacing	Edge	(mm)	Embedment	concrete	fixture	Torque
(mm)	N _{rk}	V _{rk}	N _{rd}	V_{rd}	N _{rec}	V _{rec}	C _{cr,N}	S _{cr,N}	C _{cr,V}	C _{min} , S _{min}	(mm)	(mm)	(mm)	(Nm)
	19.00		12.70		9.07						60			
8	19.00	9.00	12.70	7.20	9.07	5.14	80	160	80	40	80	10	9	10
	19.00		12.70		9.07						160	T		
	22.62		15.08		10.77						60			
10	30.20	15.00	20.10	12.00	14.36	8.57	100	200	90	50	90	12	12	20
	30.20		20.10		14.36						200	Ι		
	29.82		19.88		14.20						70			
12	43.80	21.00	29.20	16.80	20.86	12.00	120	240	110	60	110	14	14	40
	43.80		29.20		20.86						240			
	43.43		28.95		20.68						80			
16	67.86	39.00	45.24	31.20	32.31	22.29	160	320	125	80	125	18	18	80
	81.60		54.40		38.86						320			
	55.42		36.95		26.39						90			
20	104.68	61.00	69.79	48.80	49.85	34.86	200	400	180	100	170	22	22	120
	127.40		84.90		60.64						400			
	63.33		42.22		30.16						100	1		
24	133.00	88.00	88.67	70.40	63.33	50.29	230	460	220	120	210	28	26	160
	183.60		122.40		87.43						480			
	70.91		47.27		33.77						110			
27	154.72	115.00	103.15	92.00	73.68	65.71	270	540	240	135	240	30	30	180
	238.00		159.10		113.64						540			
	78.04		52.02		37.16						120			
30	182.09	142.50	121.39	114.00	86.71	81.43	280	560	280	150	280	35	32	200
	292.00		194.50		138.93						600			
	88.95		59.30		42.36						130	1		
33	205.27	173.50	136.85	138.80	97.75	121.43	310	620	310	165	300	37	36	250
	360.00		240.60		171.86						660			
	108.57		72.38		51.70						150	4		
36	246.10	212.50	164.07	170.00	117.19	121.43	330	660	330	180	340	40	38	300
	425.00		283.33		202.38						720			

= steel failure

Design Resistance used with various stud strengths, material and rebar.

5.8 Grade Steel Studding

																							$F_{d,s}$
Stud	Hole															steel	failur	е				h _{ef}	design
Diameter	Diameter									Emb	edme	ent D	epth I	nef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	12.7																				59	12.7
10	12	15.1	17.6	20.1																		80	20.1
12	14		19.9	22.7	25.6	28.4	29.2															103	29.2
16	18			29.0	32.6	36.2	39.8	43.4	47.1	50.7	54.4											150	54.4
20	22			32.8	36.9	41.1	45.2	49.3	53.4	57.5	65.7	82.1	84.9									207	84.9
24	28					42.2	46.5	50.7	54.9	59.1	67.6	84.5	101.3	118.2	122.4							290	122.4
27	30						47.3	51.6	55.9	60.2	68.8	86.0	103.2	120.3	137.5	159.1						370	159.1
30	35							52.0	56.4	60.7	69.4	86.7	104.1	121.4	138.8	173.4	194.5		_			449	194.5
33	38								59.3	63.9	73.0	91.2	109.5	127.7	146.0	182.5	219.0	240.6				527	240.6
36	40									67.6	77.2	96.5	115.8	135.1	154.4	193.0	231.6	260.6	283.2			587	283.2
Depth	ı (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

8.8 Grade Steel Studding

																							$F_{d,s}$
Stud	Hole																					h _{ef}	design
Diameter	Diameter									Emb	edme	ent D	epth I	nef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	12.9	15.0	17.2	19.3	19.5																91	19.5
10	12	15.1	17.6	20.1	22.6	25.1	27.6	30.2	30.9													123	30.9
12	14		19.9	22.7	25.6	28.4	31.2	34.1	36.9	39.8	45.0											158	45.0
16	18			29.0	32.6	36.2	39.8	43.4	47.1	50.7	57.9	72.4	83.7									231	83.7
20	22			32.8	36.9	41.1	45.2	49.3	53.4	57.5	65.7	82.1	98.5	114.9	130.7			_				318	130.7
24	28					42.2	46.5	50.7	54.9	59.1	67.6	84.5	101.3	118.2	135.1	168.9	188.3		_			446	188.3
27	30						47.3	51.6	55.9	60.2	68.8	86.0	103.2	120.3	137.5	171.9	206.3	232.1				570	244.8
30	35							52.0	56.4	60.7	69.4	86.7	104.1	121.4	138.8	173.4	208.1	234.1	260.2			690	299.2
33	38								59.3	63.9	73.0	91.2	109.5	127.7	146.0	182.5	219.0	246.4	273.7	301.1		811	370.1
36	40									67.6	77.2	96.5	115.8	135.1	154.4	193.0	231.6	260.6	289.5	318.5	347.4	903	435.7
Depth	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

Design Resistance used with various stud strengths, material and rebar.

10.9 Grade Steel Studding

																							F _{d,s}
Stud	Hole																					h _{ef}	design
Diameter	Diameter									Emb	edme	ent D	epth I	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	12.9	15.0	17.2	19.3	21.4	23.6	25.7	27.2						-							127	27.2
10	12	15.1	17.6	20.1	22.6	25.1	27.6	30.2	32.7	35.2	40.2	43.1		_								171	43.1
12	14		19.9	22.7	25.6	28.4	31.2	34.1	36.9	39.8	45.4	56.8	62.6									220	62.6
16	18			29.0	32.6	36.2	39.8	43.4	47.1	50.7	57.9	72.4	86.9	101.3	115.8	116.6						322	116.6
20	22			32.8	36.9	41.1	45.2	49.3	53.4	57.5	65.7	82.1	98.5	114.9	131.4	164.2						443	182.0
24	28					42.2	46.5	50.7	54.9	59.1	67.6	84.5	101.3	118.2	135.1	168.9	202.7		_			621	262.2
27	30						47.3	51.6	55.9	60.2	68.8	86.0	103.2	120.3	137.5	171.9	206.3	232.1				793	341.0
30	35							52.0	56.4	60.7	69.4	86.7	104.1	121.4	138.8	173.4	208.1	234.1	260.2			961	416.7
33	38								59.3	63.9	73.0	91.2	109.5	127.7	146.0	182.5	219.0	246.4	273.7	301.1		1130	515.5
36	40									67.6	77.2	96.5	115.8	135.1	154.4	193.0	231.6	260.6	289.5	318.5	347.4	1258	606.9
Depth	ı (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

A4-70 Stainless Steel Studding

																							• a,s
Stud	Hole															steel	failur	е				h _{ef}	design
Diameter	Diameter									Emb	edmo	ent D	epth I	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	12.9	13.7			_																64	13.7
10	12	15.1	17.6	20.1	21.7																	86	21.7
12	14		19.9	22.7	25.6	28.4	31.2	31.6														111	31.6
16	18			29.0	32.6	36.2	39.8	43.4	47.1	50.7	57.9	58.8		_								162	58.8
20	22			32.8	36.9	41.1	45.2	49.3	53.4	57.5	65.7	82.1	91.7									223	91.7
24	28					42.2	46.5	50.7	54.9	59.1	67.6	84.5	101.3	118.2	132.1							313	132.1
27	30						47.3	51.6	55.9	60.2	68.8	80.2									*1	187	80.2
30	35							52.0	56.4	60.7	69.4	86.7	98.1								*1	226	98.1
33	38								59.3	63.9	73.0	91.2	109.5	121							*1	266	121.3
36	40									67.6	77.2	96.5	115.8	135.1	143						*1	296	142.8
Depth	ı (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

*1 = Tensile strength 500N/mm2

E.

Design Resistance used with various stud strengths, material and rebar.

A4-80 Stainless Steel Studding

		_																					F _{d,s}
Stud	Hole																					h _{ef}	design
Diameter	Diameter									Emb	edmo	ent D	epth l	hef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720	(mm)	(kN)
8	10	12.9	15.0	15.7			_															73	15.7
10	12		17.6	20.1	22.6	24.8																99	24.8
12	14		19.9	22.7	25.6	28.4	31.2	34.1	36.1				_									127	36.1
16	18			29.0	32.6	36.2	39.8	43.4	47.1	50.7	57.9	67.2										186	67.2
20	22			32.8	36.9	41.1	45.2	49.3	53.4	57.5	65.7	82.1	98.5	104.8								255	104.8
24	28					42.2	46.5	50.7	54.9	59.1	67.6	84.5	101.3	118.2	132.1						*2	313	132.1
27	30						47.3	51.6	55.9	60.2	68.8	80.2		_		-					*1	187	80.2
30	35							52.0	56.4	60.7	69.4	86.7	98.1								*1	226	98.1
33	38								59.3	63.9	73.0	91.2	109.5	121.3							*1	266	121.3
36	40									67.6	77.2	96.5	115.8	135.1	142.8						*1	296	142.8
Depth	ı (mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	480	540	600	660	720		

*1 = Tensile strength 500N/mm2

*2 = Tensile strength 700N/mm2

High bond reinforcing bars Fyk=500N/mm2

																							d,s
Rebar	Hole																					h _{ef}	yield
Diameter	Diameter									Emb	edme	ent D	epth I	nef								failure	load
(mm)	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	500	560	640	720	800	(mm)	(kN)
8	10	8.7	10.2	11.7	13.1	14.6	16.0	17.5	19.0	20.4	21.9											150	21.9
10	12	10.4	12.1	13.8	15.6	17.3	19.0	20.7	22.5	24.2	27.6	34.1			_							198	34.1
12	14		13.7	15.7	17.6	19.6	21.6	23.5	25.5	27.4	31.4	39.2	47.1	49.2		_						251	49.2
16	20			19.3	21.7	24.1	26.5	29.0	31.4	33.8	38.6	48.3	57.9	67.6	77.2							362	87.4
20	25			21.0	23.6	26.2	28.9	31.5	34.1	36.7	42.0	52.5	63.0	73.5	84.0	105.0						521	136.6
25	30					28.3	31.1	33.9	36.8	39.6	45.2	56.6	67.9	79.2	90.5	113.1	141.4		_			695	196.5
28	35						33.4	36.4	39.5	42.5	48.6	60.7	72.8	85.0	97.1	121.4	151.8	170.0				882	267.8
32	40								43.1	46.5	53.1	66.4	79.6	92.9	106.2	132.7	165.9	185.8	212.3			1054	349.7
36	44									52.3	59.7	74.7	89.6	104.5	119.4	149.3	186.6	209.0	238.9	268.8		1188	443.5
40	50										66.4	82.9	99.5	116.1	132.7	165.9	207.4	232.3	265.4	298.6	331.8	1317	546.3
Depth	(mm)	60	70	80	90	100	110	120	130	140	160	200	240	280	320	400	500	560	640	720	800		

E.

			Non Cracke	ed Concret	e				Cracked	Concrete			
	Charact Resistar	teristic nce (kN)	Design Resi	istance (kN)	Recommen	ided Load (kN)	Chara Resista	cteristic nce (kN)	Design Res	istance (kN)	Recommer	ided Load (kN)	Nominal Embed- ment
Size	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	(mm)
(mm)	N _{rk}	V _{rk}	N _{rd}	V_{rd}	N _{rec}	V_{rec}	N _{rk}	V _{rk}	N _{rd}	V_{rd}	N _{rec}	V_{rec}	(11111)
	19.30		12.87		9.19		7.92		5.28		3.77		60
8	25.74	9.00	17.16	7.20	12.26	5.14	10.56	9.00	7.04	7.20	5.03	5.14	80
	51.47		34.31		24.51		21.11		14.07		10.05		160
	22.62		15.08		10.77		10.40		6.94		4.96		60
10	33.93	15.00	22.62	12.00	16.16	8.57	15.60	15.00	10.40	12.00	7.43	8.57	90
	75.40		50.27		35.90		34.68		23.12		16.52		200
	29.82		19.88		14.20		13.12		8.75		6.24		70
12	46.86	21.00	31.24	16.80	22.31	12.00	20.62	21.00	13.75	16.80	9.82	12.00	110
	102.24		68.16		48.69		44.98		29.98		21.42		240
	43.43		28.95		20.68		17.37		11.58		8.27		80
16	67.86	39.00	45.24	31.20	32.31	22.29	27.14	39.00	18.10	31.20	12.93	22.29	125
	173.72		115.81		82.72		69.50		46.33		33.10		320
	55.42		36.95		26.39		21.06		14.04		10.00		90
20	104.68	61.00	69.79	48.80	49.85	34.86	39.78	61.00	26.52	48.80	18.94	34.86	170
	246.30		164.20		117.29		93.60		62.40		44.59		400
	63.33		42.22		30.16		22.80		15.20		10.86		100
24	133.00	88.00	88.67	70.40	63.33	50.29	47.88	88.00	31.92	70.40	22.80	50.29	210
	304.01		202.67		144.76		109.44		72.96		52.12		480
	70.91		47.27		33.77		24.11		16.07		11.48		110
27	154.72	115.00	103.15	92.00	73.68	65.71	52.60	115.00	35.07	92.00	25.05	65.71	240
	348.11		232.08		165.77		118.36		78.91		56.36		540
	78.04		52.02		37.16		24.97		16.65		11.89		120
30	182.09	142.50	121.39	114.00	86.71	81.43	58.27	142.50	38.85	114.00	27.75	81.43	280
	390.19		260.12		185.80		124.86		83.24		59.46		600
	88.95		59.30		42.36					_			130
33	205.27	173.50	136.85	138.80	97.75	99.14	Not Ap	plicable	Not Ap	plicable	Not Ap	plicable	300
	451.60		301.07		215.05								660
	108.57		72.38		51.70								150
36	246.10	212.50	164.07	170.00	117.19	121.43	Not A	plicable	Not Ap	plicable	Not Ap	plicable	340
	521.15		347.44		248.17								720

Characteristic and Design Load resistances based on characteristic bond strengths for hef 4d (minimum embedment) to 20d

л г

Bond Strength Factors

Influence of concrete strength on combined pull out and concrete cone resistance

Concrete Strength N/mm2 (Mpa)	C15/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
non cracked fc =	0.96	1.00	1.03	1.05	1.06	1.07	1.08	1.10
cracked fc =	0.96	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Influence of environmental conditions in non cracked concrete

		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36
Temp I 40°C / 24°C	Dry and Wet	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Influence of environmental conditions in cracked concrete

		M8	M10	M12	M16	M20	M24	M27	M30
Temp l 40°C / 24°C	Dry and Wet	0.46	0.46	0.44	0.40	0.38	0.36	0.34	0.32

		I	Non Cracke	ed Concret	e				Cracked	Concrete			
	Charact Resistar	teristic nce (kN)	Design Res	istance (kN)	Recommer	nded Load (kN)	Charact Resistar	teristic nce (kN)	Design Res	istance (kN)	Recommer	ided Load (kN)	Nominal Embed- ment
Rebar	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	Tension	Shear	(mm)
ø	N _{rk}	V _{rk}	N _{rd}	V_{rd}	N _{rec}	V _{rec}	N _{rk}	V _{rk}	N _{rd}	V _{rd}	N _{rec}	V _{rec}	(mm)
	15.68		8.71		6.22								60
8	20.91	13.95	11.62	9.30	8.30	6.64							80
	41.82		23.23		16.60		Not Ap	nlicable	Not An	nlicable	Not An	nlicable	160
	18.66		10.37		7.41		Νοι Αρ	plicable		plicable	Νου Αρ	plicable	60
10	27.99	21.45	15.55	14.30	11.11	10.21							90
	62.20		34.56		24.68					-			200
	24.70		13.72		9.80		10.56		5.86		4.19		70
12	38.82	31.05	21.56	20.70	15.40	14.79	16.59	31.05	9.22	20.70	6.58	14.79	110
	84.69		47.05		33.61		36.19		20.11		14.36		240
	31.67		17.59		12.57		13.72		7.62		5.45		80
14	45.52	42.45	25.29	28.30	18.06	20.21	19.73	42.45	10.96	28.10	7.83	20.07	115
	110.84		61.58		43.98		48.03		26.68		19.06		280
	34.74		19.30		13.79		15.28		8.49		6.06		80
16	54.29	55.50	30.16	37.00	21.54	26.43	23.88	55.50	13.26	37.00	9.47	26.43	125
	138.97		77.21		55.15		61.12		33.96		24.26		320
	37.55		20.86		14.90		16.51		9.17		6.55		80
18	70.40	69.66	39.11	46.44	27.94	33.17	30.96	69.66	17.20	46.44	12.29	33.17	150
	168.97		93.87		67.05		74.31		41.28		29.49		360
	36.76		20.42		14.59		19.79		11.00		7.85		90
20	69.43	86.55	38.57	57.70	27.55	41.21	37.39	86.55	20.77	57.70	14.84	41.21	170
	163.36		90.76		64.83		87.96		48.87		34.91		400
	44.92		24.96		17.83		24.19		13.44		9.60		100
22	85.36	104.01	47.42	69.34	33.87	49.53	45.96	104.00	25.53	69.34	18.24	49.53	190
	197.67		109.82		78.44		106.44		59.13		42.24		440
	51.05	1	28.36		20.26		27.49	1	15.27		10.91		100
25	107.21	135.00	59.56	90.00	42.54	64.29	57.73	135.00	32.07	90.00	22.91	64.29	210
	255.26		141.81		101.29		137.45		76.36		54.54		500
	61.08		33.93		24.24							I	112
28	152.71	168.75	84.84	112.50	60.60	80.36							280
	305.41		169.67		121.20		Not Ap	plicable	Not Ap	plicable	Not Ap	plicable	560
	77.21		42.89		30.64							I	128
32	193.02	220.95	107.23	147.30	76.60	105.21							320
	386.04		214.47		153.19								640

Characteristic and Design Load resistances for <u>REBAR</u> based on characteristic bond strengths for hef 4d (min embedment) to 20d

Bond Strength Factors - REBAR

Influence of concrete strength on combined pull out and concrete cone resistance

Concrete Strength N/mm2 (MPa)	C15/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
non cracked fc =	0.96	1.00	1.03	1.05	1.06	1.07	1.08	1.10
cracked fc =	0.96	1.00	1.03	1.05	1.06	1.07	1.08	1.09

Influence of environmental conditions in non cracked concrete

		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 18	Ø 20	Ø 22	Ø 25	Ø 28	Ø 32
Temp I 40°C / 24°C	Dry and Wet	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Influence of environmental conditions in cracked concrete

		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 18	Ø 20	Ø 22	Ø 25	Ø 28	Ø 32
Temp I 40°C / 24°C	Dry and Wet	n/a	n/a	0.43	0.43	0.43	0.43	0.53	0.53	0.53	n/a	n/a

Material Properties for grades of other threaded rod and rebar

								1
Stud Gr	rade 8.8	Stud Gr	ade 10.9	Stud Gra	de A4-70	Stud Gra	de A4-80	
N _{rk, s}	N _{rd, s}	N _{rk, s}	N _{rd, s}	N _{rk, s}	N _{rd, s}	N _{rk, s}	N _{rd, s}	
(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
29.2	19.5	38.1	27.2	25.6	13.7	29.2	15.6	
46.4	30.9	60.3	43.1	40.6	21.7	46.4	24.8	
67.4	44.9	87.7	62.6	59.0	31.6	67.4	36.0	
125.6	83.7	163.0	116.4	109.9	58.8	125.7	67.2	
196.1	130.7	255.0	182.1	171.5	91.7	196.0	104.8	
282.5	188.3	367.0	262.1	247.1	132.1	293.0	132.1	
367.0	244.7	477.4	341.0	229.4	80.2	229.4	80.2	*1
448.8	299.2	583.0	416.4	280.6	98.1	280.6	98.1	*1
653.6	435.7	849.7	606.9	408.4	142.8	408.4	142.8	*1
	Stud Gi Nrk, s (kN) 29.2 46.4 67.4 125.6 196.1 282.5 367.0 448.8 653.6	Stud Grade 8.8 N _{rk, S} N _{rd, S} (kN) (kN) 29.2 19.5 46.4 30.9 67.4 44.9 125.6 83.7 196.1 130.7 282.5 188.3 367.0 244.7 448.8 299.2 653.6 435.7	Stud Grade 8.8 Stud Grade 7.0 Nrk, s Nrd, s Nrk, s (kN) (kN) (kN) 29.2 19.5 38.1 46.4 30.9 60.3 67.4 44.9 87.7 125.6 83.7 163.0 196.1 130.7 255.0 282.5 188.3 367.0 367.0 244.7 477.4 448.8 299.2 583.0 653.6 435.7 849.7	Stud Grade 8.8 Stud Grade 10.9 N _{rk, S} N _{rd, S} N _{rk, S} N _{rd, S} (kN) (kN) (kN) (kN) 29.2 19.5 38.1 27.2 46.4 30.9 60.3 43.1 67.4 44.9 87.7 62.6 125.6 83.7 163.0 116.4 196.1 130.7 255.0 182.1 282.5 188.3 367.0 262.1 367.0 244.7 477.4 341.0 448.8 299.2 583.0 416.4 653.6 435.7 849.7 606.9	Stud Grade 8.8 Stud Grade 10.9 Stud Grade 70.9 N _{rk, S} N _{rd, S} N _{rk, S} N _{rd, S} N _{rk, S} (kN) (kN) (kN) (kN) (kN) 29.2 19.5 38.1 27.2 25.6 46.4 30.9 60.3 43.1 40.6 67.4 44.9 87.7 62.6 59.0 125.6 83.7 163.0 116.4 109.9 196.1 130.7 255.0 182.1 171.5 282.5 188.3 367.0 262.1 247.1 367.0 244.7 477.4 341.0 229.4 448.8 299.2 583.0 416.4 280.6 653.6 435.7 849.7 606.9 408.4	Stud Grade 8.8 Stud Grade 10.9 Stud Grade A4-70 N _{rk, S} N _{rd, S} N _{rk, S} N _{rd, S} N _{rd, S} N _{rd, S} (kN) (kN) (kN) (kN) (kN) (kN) (kN) 29.2 19.5 38.1 27.2 25.6 13.7 46.4 30.9 60.3 43.1 40.6 21.7 67.4 44.9 87.7 62.6 59.0 31.6 125.6 83.7 163.0 116.4 109.9 58.8 196.1 130.7 255.0 182.1 171.5 91.7 282.5 188.3 367.0 262.1 247.1 132.1 367.0 244.7 477.4 341.0 229.4 80.2 448.8 299.2 583.0 416.4 280.6 98.1 653.6 435.7 849.7 606.9 408.4 142.8	Stud Grade 8.8Stud Grade 10.9Stud Grade A4-70Stud Grade A4-70N rk, sN rd, sN rk, sN rd, sN rk, s <th>Stud Grade 8.8Stud Grade 10.9Stud Grade A4-70Stud Grade A4-80$N_{rk, s}$$N_{rd, s}$$N_{rk, s}$$N_{rd, s}$$N_{rd, s}$$N_{rd, s}$$N_{rd, s}$$(kN)$$(kN)$$(kN)$$(kN)$$(kN)$$(kN)$$(kN)$$(kN)$$(kN)$$29.2$$19.5$$38.1$$27.2$$25.6$$13.7$$29.2$$15.6$$46.4$$30.9$$60.3$$43.1$$40.6$$21.7$$46.4$$24.8$$67.4$$44.9$$87.7$$62.6$$59.0$$31.6$$67.4$$36.0$$125.6$$83.7$$163.0$$116.4$$109.9$$58.8$$125.7$$67.2$$196.1$$130.7$$255.0$$182.1$$171.5$$91.7$$196.0$$104.8$$282.5$$188.3$$367.0$$262.1$$247.1$$132.1$$293.0$$132.1$$367.0$$244.7$$477.4$$341.0$$229.4$$80.2$$229.4$$80.2$$448.8$$299.2$$583.0$$416.4$$280.6$$98.1$$280.6$$98.1$$653.6$$435.7$$849.7$$606.9$$408.4$$142.8$$408.4$$142.8$</th>	Stud Grade 8.8Stud Grade 10.9Stud Grade A4-70Stud Grade A4-80 $N_{rk, s}$ $N_{rd, s}$ $N_{rk, s}$ $N_{rd, s}$ $N_{rd, s}$ $N_{rd, s}$ $N_{rd, s}$ (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 29.2 19.5 38.1 27.2 25.6 13.7 29.2 15.6 46.4 30.9 60.3 43.1 40.6 21.7 46.4 24.8 67.4 44.9 87.7 62.6 59.0 31.6 67.4 36.0 125.6 83.7 163.0 116.4 109.9 58.8 125.7 67.2 196.1 130.7 255.0 182.1 171.5 91.7 196.0 104.8 282.5 188.3 367.0 262.1 247.1 132.1 293.0 132.1 367.0 244.7 477.4 341.0 229.4 80.2 229.4 80.2 448.8 299.2 583.0 416.4 280.6 98.1 280.6 98.1 653.6 435.7 849.7 606.9 408.4 142.8 408.4 142.8

= Tensile strength 500N/mm2

	Stud Gr	ade 8.8	Stud Gra	ade 10.9	Stud Gra	de A4-70	Stud Gra	de A4-80
Stud Diameter	V _{rk, s}	V _{rd, s}						
(mm)	(kN)							
M8	14.6	11.7	19.0	15.2	12.8	8.2	14.6	9.4
M10	23.2	18.6	30.2	24.1	20.3	13.0	23.2	14.9
M12	33.7	27.0	43.8	35.1	29.5	18.9	33.7	21.6
M16	62.8	50.2	81.6	65.3	55.0	35.2	62.8	40.3
M20	98.0	78.4	127.4	101.9	85.8	55.0	98.0	62.8
M24	141.2	113.0	183.6	146.8	123.6	79.2	141.2	90.5
M27	183.5	146.8	238.7	191.0	114.7	48.4	114.7	48.4
M30	224.4	179.5	291.5	215.9	140.3	59.2	140.3	59.2
M36	326.8	261.4	424.8	283.2	204.2	86.2	204.2	86.2

	Rebar BSt 50	00 to DIN 488	Rebar BSt 50	00 to DIN 488
Rebar Diameter	N _{rk, s}	N _{rd, s}	V _{rk, s}	V _{rd, s}
(mm)	(kN)	(kN)	(kN)	(kN)
8	28.0	20.0	14.0	9.3
10	43.0	30.7	21.5	14.3
12	62.0	44.3	31.0	20.7
14	84.4	67.0	42.5	28.3
16	111.0	79.3	55.5	37.0
18	139.5	100.0	70.0	46.7
20	173.0	123.6	86.5	57.7
22	208.3	149.3	104.5	69.7
25	270.0	192.9	135.0	90.0
28	339.0	242.1	169.0	112.7
32	442	315.7	221	147.3
36	563.2	443.5	281.6	187.7
40	693.8	546.3	346.9	231.3

More notes : see back page

*1

Chemfix Products Ltd • Mill Street East • Dewsbury • West Yorkshire • UK T: +44 (0) 1924 453886 • F: +44 (0) 1924 431658 • info@chemfix.co.uk • www.chemfix.co.uk

Effect of Anchor Spacing - Tension

Anchor Spacing		Stud / Rebar Diameter									
(mm)	8	10	12	16	20	24	27	30	33	36	40
40	0.64										
50	0.67	0.63									
60	0.70	0.65	0.63								
70	0.73	0.67	0.64								
80	0.76	0.69	0.66	0.63							
90	0.79	0.72	0.68	0.64							
100	0.82	0.74	0.70	0.65	0.63						
120	0.87	0.79	0.74	0.68	0.65	0.63					
150	0.96	0.86	0.80	0.73	0.68	0.65	0.64	0.63			
160	1.00	0.88	0.82	0.74	0.70	0.66	0.65	0.63	0.62		0.63
180		0.93	0.86	0.77	0.72	0.68	0.65	0.65	0.64	0.64	0.64
200		1.00	0.90	0.80	0.74	0.69	0.67	0.66	0.65	0.65	0.65
225			0.95	0.84	0.77	0.72	0.69	0.68	0.67	0.67	0.66
240			1.00	0.86	0.79	0.73	0.71	0.69	0.69	0.68	0.67
250				0.87	0.80	0.74	0.72	0.70	0.70	0.68	0.68
275				0.91	0.83	0.76	0.74	0.72	0.72	0.70	0.69
280				0.92	0.84	0.77	0.75	0.73	0.72	0.70	0.69
300				0.95	0.86	0.79	0.76	0.74	0.74	0.72	0.71
320				1.00	0.88	0.81	0.78	0.76	0.75	0.73	0.72
350					0.92	0.83	0.81	0.78	0.78	0.75	0.73
400					1.00	0.88	0.86	0.82	0.82	0.78	0.76
440						0.92	0.89	0.85	0.85	0.81	0.79
460						1.00	0.91	0.87	0.87	0.82	0.80
500							0.95	0.90	0.90	0.85	0.82
540							1.00	0.93	0.93	0.88	0.84
560								1.00	0.95	0.89	0.86
620									1.00	0.93	0.89
660										1.00	0.91
720											1.00

Effect of Edge Distance - Tension

Edge Distance		Stud / Rebar Diameter									
(mm)	8	10	12	16	20	24	27	30	33	36	40
40	0.64										
50	0.73	0.63									
60	0.82	0.70	0.63								
70	0.90	0.77	0.68								
80	1.00	0.84	0.74	0.63							
90		0.91	0.80	0.67							
100		1.00	0.86	0.71	0.63						
110			0.92	0.76	0.66						
120			1.00	0.80	0.70	0.64					
140				0.89	0.77	0.67	0.63	0.63			
160				1.00	0.84	0.72	0.70	0.65	0.62		
180					0.91	0.78	0.75	0.66	0.70	0.67	0.68
200					1.00	0.84	0.81	0.76	0.76	0.78	0.71
220						0.89	0.86	0.81	0.81	0.82	0.75
240						1.00	0.92	0.86	0.86	0.87	0.78
270							1.00	0.94	0.94	0.93	0.83
280								1.00	0.97	0.96	0.85
310									1.00	0.98	0.90
330										1.00	0.93
360											1.00

Effect of Edge Distance - Shear

Edge Distance		Stud / Rebar Diameter									
(mm)	8	10	12	16	20	24	27	30	33	36	40
40	0.25										
50	0.44	0.30									
60	0.63	0.48	0.30								
70	0.81	0.65	0.44								
80	1.00	0.83	0.58	0.40							
90		1.00	0.72	0.53							
100			0.86	0.67	0.35						
110			1.00	0.80	0.44						
125				1.00	0.58	0.35					
140					0.72	0.46	0.44	0.30			
160					0.91	0.62	0.57	0.35	0.34		
180					1.00	0.77	0.69	0.46	0.41	0.33	
200						0.92	0.82	0.57	0.50	0.42	0.32
220						1.00	0.94	0.68	0.59	0.51	0.53
240							1.00	0.78	0.68	0.60	0.59
280								1.00	0.86	0.78	0.72
310									1.00	0.91	0.82
330										1.00	0.89
360											1.00

Post installed rebar connections

Minimum anchorage length $^{1)}$ and lap splice length for C20/25 and maximum installation length (I $_{max}$)

Rebar					
Ød _s (mm)	f _{y,k} (N/mm²)	l _{b,min} (mm)	I _{o,min} (mm)	I _{max,min} (mm)	
8	500	113	200	1000	N/mm ² = MPa
10	500	142	204	1000	
12	500	170	200	1200	1
14	500	198	210	1400]
16	500	227	240	1600]

1) According to EN 1992-1-1:2004 $I_{b,min}$ (8.6) and $I_{0,min}$ (8.11) for good bond conditions and $a_{\delta} = 1,0$ with maximum yield stress for rebar B500 B and $y_{M} = 1,15$

Design values of the ultimate bond resistance $f_{bd}^{(1)}$ in N/mm² for all drilling methods for good conditions

Rebar Ø	Concrete Class									
Ø d _s	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/60	C50/60	
8 mm	1.6	2	2.3	2.3	2.3	2.3	2.3	2.3	2.3	
10 mm	1.6	2	2.3	2.3	2.3	2.7	2.7	2.7	2.7	
12 mm	1.6	2	2.3	2.3	2.3	2.7	2.7	2.7	2.7	
14 mm	1.6	2	2.3	2.7	3	3	3	3	3	
16 mm	1.6	2	2.3	2.7	3	3.4	3.7	4	4.3	

1) Tabulated values for fbd are valid for good bond condition according to EN1992-1-1:2004. For all other bond conditions multiply the values for fbd by 0.7.

Post installed rebar connections

Values for pre-calculation of anchoring

	α1=α	₂ =α ₃ =α ₄ =α ₅ =	1.0	α ₂ or α	₅ =0.7; α ₁ =α ₃ =	-α ₄ =1.0
Rebar - Ø ds	Anchorage length l _{bd}	Design value N _{rd}	Mortar volume	Anchorage length l _{bd}	Design value N _{rd}	Mortar volume
(mm)	(mm)	(kN)	(ml)	(mm)	(kN)	(ml)
	163*	9.42	12	163*	9.42	12
	180	10.40	14	175	10.11	13
	250	14.44	19	190	10.98	14
8	378	21.84	28	265	15.31	20
	204*	14.73	18	204*	14.73	18
	220	15.89	20	220	15.89	20
	310	22.39	28	240	17.33	22
	390	28.17	35	280	20.22	25
10	473	34.16	43	331	23.90	30
	170*	14.73	18	170*	14.73	18
	270	23.40	29	230	19.93	24
	370	32.07	39	280	24.27	30
	470	40.73	50	340	29.47	36
12	567	49.14	60	397	34.41	42
	198*	20.02	24	198*	20.02	24
	310	31.34	37	260	26.29	31
	430	43.48	52	330	33.37	40
	550	55.61	66	400	40.44	48
14	662	66.93	80	463	46.81	56
	227*	26.23	31	227*	26.23	31
	360	41.60	49	300	34.67	41
	490	56.62	67	380	43.91	52
	620	71.64	84	450	52.00	61
16	756	87.36	103	529	61.13	72

C20/25; good bond condition; Rebar Yield Strength 500 N/mm² (500 MPa)

* Minimum anchorage length. The design value is valid for "good bond conditions" according to EN 1992-1-1.

All other condition: multiply value by 0.7. Mortar volume based on equation: $V = 1.2 \cdot (d_0^2 - d_d^2) \cdot \prod I_b / 4$

Post installed rebar connections

Values for pre-calculation of overlap joints

	α1=α	₂ =α ₃ =α ₄ =α ₅ =	1.0	α ₂ or α	₅ =0.7; α ₁ =α ₃ =	=α ₄ =1.0
Rebar - Ø ds	Anchorage length l _{bd}	Design value N _{rd}	Mortar volume	Anchorage length l _{bd}	Design value N _{rd}	Mortar volume
(mm)	(mm)	(kN)	(ml)	(mm)	(kN)	(ml)
	200	11.56	15	200	11.56	15
	240	13.87	18	220	12.71	17
	290	16.76	22	230	13.29	17
8	378	21.84	29	265	15.31	20
	204	10.25	18	204	14.73	18
	270	13.56	24	230	16.61	21
	340	17.08	31	270	19.50	24
	400	20.10	36	300	21.67	27
10	473	23.76	43	331	23.90	30
	200	17.33	21	200	17.33	21
	290	25.13	31	250	21.67	26
	380	32.93	40	300	26.00	32
	480	41.60	51	350	30.33	37
12	567	49.14	60	397	34.41	42
	210	21.23	25	210	21.23	25
	320	32.35	39	270	27.30	33
	440	44.49	53	340	34.38	41
	550	55.61	66	400	40.44	48
14	662	66.93	80	463	46.81	56
	240	27.73	33	240	27.73	33
	370	42.75	50	310	35.82	42
	500	57.78	68	380	43.91	52
	630	72.80	86	460	53.15	62
16	756	87.36	103	529	61.13	72

C20/25; good bond condition; Rebar Yield Strength 500 N/mm² (500 MPa)

* Minimum anchorage length. The design value is valid for "good bond conditions" according to EN 1992-1-1.

All other condition: multiply value by 0.7. Mortar volume based on equation: $V = 1.2 \cdot (d_0^2 - d_d^2) \cdot \prod l_b / 4$

Post installed rebar schematics

Application examples of post-installed rebar

Figure 1: Overlap joints in slabs and beams.

Figure 3: End anchoring of slabs or beams, designed as simply supported.

Figure 5: Anchoring of reinforcement to cover the line of acting tensile force.

Figure 2: Overlap joint in foundation of a column or wall where the rebars are stressed in tension.

Figure 4: Rebar connection of components stressed primarily in compression. The rebar are stressed in compression.

Note to figure 1 to 5 :

In the figures no transverse reinforcement is plotted, the transverse reinforcement as required by EC 2 shall be present. The shear transfer between old and new concrete shall be designed according to EC2. Description of the bonded-in rebars and overlap joints see Annex 4 and 5.

* Roughened joint

Minimum Curing Time

Concrete Temperature	Gel - Working Time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
- 10°C *	50 min	240 min	x2
-5°C *	40 min	180 min	x2
5°C	20 min	90 min	x2
15°C	9 min	60 min	x2
25°C	5 min	30 min	x2
35°C	3 min	20 min	x2

- * Resin temperature must be at least 20°C
- Full cure 24 hours
- All specifications based on supplied mixer

Temperature Ranges

Temperature Range	Temperature Range Concrete Service Temperature		Maximum Short Term Concrete Temp		
Range I	-40°C to +40°C	+24°C	+40°C		

Service temperature range: Range of ambient temperatures after installation and during the lifetime of the anchor.

Short term temperature: Temperatures within the service temperature range which vary over short intervals,

e.g. day/night cycles and freeze/thaw cycles.

Long term temperature: Temperature, within the service temperature range, which will be approximately constant

over significant periods of time.

Long term temperatures will include constant or near constant temperatures, such as those experienced in cold stores or next to heating installations.

Notes

PAGE 2 :

Typical characteristic and design resistance performance with 5.8 grade studding and associated installation data

All data is based on correct installation - see instructions No influence of edge and spacing Minimum base material thickness hef +30mm >100mm for M8 to M12 and for M16 to M30 hef +2 d h_{ef} range minimum or 4d whichever is greatest to 20d Concrete strength C20/25 - f_c cube = 25N/mm² (25MPa) 5.8 grade stud Temperature range I maximum long term / short term temperature +24/40°C

PAGE 3 to 5:

Design Resistance with various stud strengths, material and rebar.

Note 1 for stainless steel tensile strength is 500N/mm² (500MPa)

Note 2 for stainless steel tensile strength is 700N/mm² (700MPa)

Data shown below the minimum embedment depth is for reference only. Please refer to manufacturter for advice.

PAGE 6 and 8 :

Characteristic and Design Load resistances based on characteristic bond strengths for hef 4d (minimum embedment) to 20d

All data is based on correct installation - see instructions No influence of edge and spacing Minimum base material thickness hef +30mm >100mm for M8 to M12 and for M16 to M30 hef +2 d h_{ef} range minimum or 4d whichever is greatest to 20d Concrete strength C20/25 - f_c cube = 25N/mm² (25MPa) Temperature range i maximum long term / short term temperature +24/40°C

PAGE 7 & 9 :

Bond Strength Factors

Select concrete strength and environmental condition and apply to bond strength table on page 4

PAGE 10 :

Material Properties for grades of other threaded rod and rebar

All grades shown for information M30 studding is 8.8 grade instead of 5.8 grade. >M27 for A4-70 tensile strength of 500N/mm2, instead of 700N/mm2 M30 for A4-70 tensile strength of 500N/mm2 (500MPa), instead of 700N/mm2 (700MPa) Safety factor is 1.5 tension and 1.25 shear for all carbon steel Safety factor is 1.87 for stainless steel, up to M24, M27 to M36 is 2.86 Safety factor is 1.56 for stainless steel in shear, up to M24, M27 to M36 is 2.37 Safety factor is 1.4 tension and 1.5 shear for BSt 500 rebar

Partial Safety Factors for pages 2,3,4,5,6,7 :

1.5 for all sizes studs
 1.8 for all sizes rebar

ZAVOD ZA GRADBENIŠTVO SLOVENIJE

SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING INSTITUTE

Dimičeva ulica 12 1000 Ljubljana Slovenija

info@zag.si www.zag.si

Notified certification body NB 1404

Certificate of constancy of performance

1404 – CPR – 3533

In compliance with Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 (the Construction products Regulation or CPR), this certificate applies to the construction product

Chemfix CH+ MAX – Standard and Tropical

Bonded injection type anchor for use in concrete: sizes M8 to M24, rebar 8 to 25 mm

placed on the market under the name or trade mark of

Chemfix Products Ltd Mill Street East, Dewsbury, West Yorkshire, WF12 9BQ, United Kingdom

and produced in the manufacturing plant

Chemfix Products Ltd Mill Street East, Dewsbury, West Yorkshire, WF12 9BQ, United Kingdom.

This certificate attests that all provisions concerning the assessment and verification of constancy of performance described in the

ETA-22/0328, issued on 8. 6. 2022

and

EAD 330499-01-0601

under system 1 for the performance set out in the ETA are applied and that the factory production control conducted by the manufacturer is assessed to ensure the

constancy of performance of the construction product.

For detailed information about the performance characteristics of the product and the intended use the abovementioned ETA itself should be consulted.

This certificate was first issued on **10. 10. 2022** and will remain valid until **10. 10. 2027** as long as neither the ETA, the EAD, the construction product, the AVCP method nor the manufacturing conditions in the plant are modified significantly, unless suspended or withdrawn by the notified product certification body.

Ljubljana, 10. 10. 2022

Authorised signatory of the Certification body:

0

Marian Japelj, B. Sc.

This certificate has a total of 1 page

Certificate No. 1404 CPR - 3533, issue 1

ZAVOD ZA GRADBENIŠTVO SLOVENIJE

SLOVENIAN NATIONAL BUILDING AND CIVIL ENGINEERING INSTITUTE

Dimičeva ulica 12 1000 Ljubljana Slovenija

info@zag.si www.zag.si

Notified certification body NB 1404

Certificate of constancy of performance

1404 - CPR - 3134

In compliance with Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 (the Construction products Regulation or CPR), this certificate applies to the construction product

Chemfix Injection System CH+ Max for post-installed rebar connections

Post-installed rebar connections with Chemfix CH+ Max injection mortar

placed on the market under the name or trade mark of

Chemfix Products Ltd Mill Street East, Dewsbury, West Yorkshire, WF12 9BQ, United Kingdom

and produced in the manufacturing plant

Chemfix Products Ltd Mill Street East, Dewsbury, West Yorkshire, WF12 9BQ, United Kingdom.

This certificate attests that all provisions concerning the assessment and verification of constancy of performance described in the

ETA-19/0102, issued on 22. 6. 2022

and

EAD 330087-01-0601

under system 1 for the performance set out in the ETA are applied and that the factory production control conducted by the manufacturer is assessed to ensure the

constancy of performance of the construction product.

For detailed information about the performance characteristics of the product and the intended use the abovementioned ETA itself should be consulted.

This certificate was first issued on **25. 4. 2019** and will remain valid until **10. 10. 2027** as long as neither the ETA, the EAD, the construction product, the AVCP method nor the manufacturing conditions in the plant are modified significantly, unless suspended or withdrawn by the notified product certification body.

Ljubljana, 10. 10. 2022

Authorised signatory of the Certification body:

Marian Japelj, B. Sc.

This certificate has a total of 1 page

Certificate No. 1404 - Constant 134, issue 2

Attestation LEED v4 and v4.1 BETA

On 11 March 2022, Eurofins Product Testing A/S received a sample of a sealant with the product name:

Chemfix CH+ MAX

supplied by

CHEMFIX PRODUCTS LIMITED

The sample was supplied as being representative of the manufactured product, and it has been tested in accordance with the relevant ISO 16000, EN 16516, and ASTM D2369 testing standards (See test report no. 392-2022-00115401_A_EN and no. 392-2022-00115402_XG_EN).

The test results of the tested sample indicate that the product qualifies for LEED v4 and LEED v4.1 BETA (February 2021) projects outside the US by showing compliance with the specifications for VOC emissions and VOC content by complying with:

VOC emissions specifications in LEED EQ credit "Low-Emitting Materials" for LEED projects outside the US:

- The requirements of LEED v4.1 BETA (February 2021) by not exceeding the LCI values mentioned in the German AgBB Testing and Evaluation Scheme (2018), showing an overall R-value below or equal to 1 and having a TVOC according to EN 16516 below or equal to 1,000 μg/m³, a sum of VOC without LCI less than 100 μg/m³ and a formaldehyde emission below or equal to 10 μg/m³; all after 28 days.
- The requirements of LEED v4 by complying with:
 - The requirements of Indoor Air Comfort Gold version 7.0 (May 2020).

VOC content specifications in LEED EQ credit "Low-Emitting Materials" for LEED projects globally:

• The requirements of LEED v4 and LEED v4.1 BETA (February 2021): South Coast Air The requirements of LEED v4 and LEED v4.1 BETA (February 2021): South Coast Air Quality Management District (SCAQMD) Rule 1168 (2017) for a "other adhesive" having a VOC content below 250 g/L.

17 May 2022

ymus

Rasmus Verdier Analytical Service Manager

LEED® is the preeminent program for the design, construction, maintenance and operations of high-performance green buildings. USGBC® and the related logo are trademarks owned by the U.S. Green Building Council and are used with permission.

Eurofins Product Testing A/S • Smedeskovvej 38, 8464 Galten, Denmark • Tel. +45 70 22 42 76 www.product-testing.eurofins.com Approval Number 1810574 Test Report: J-00362149 & J-00305078

Water Regulations Approval Scheme Ltd. Unit 13, Willow Road, Pen y Fan Industrial Estate, Crumlin, Gwent, NP11 4EG

21st March 2022

Chemfix Products Ltd. Mill Street East, Dewsbury, West Yorkshire WF12 9BQ

WATER REGULATIONS APPROVAL SCHEME LTD. (WRAS) MATERIAL APPROVAL

The material referred to in this letter is suitable for contact with wholesome water for domestic purposes having met the requirements of BS6920-1:2000 and/or 2014 'Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of the water'.

The reference relates solely to its effect on the quality of the water with which it may come into contact and does not signify the approval of its mechanical or physical properties for any use.

RESIN ANCHORS

5311

'Chemfix CH+ Max '. Site applied, two-part (supplied with internal mixing nozzle so no manual mixing required), brown coloured chemical anchor resin.

Apply as per manufacturer's instructions dated 14.12.2021. Cure for 4 days@5°C.

For use with water up to 23°C.

For use only as a resin anchor having been tested at a reduced surface area to volume ratio of 1,000mm² per 1 litre of water.

This material is only approved for the mixing and curing conditions that appear on the approval. If the mix and cure conditions are varied from those specified on the approval then the material is not covered by the scope of the approval.

APPROVAL NUMBER: 1810574 APPROVAL HOLDER: CHEMFIX PRODUCTS LTD.

The Scheme reserves the right to review approval. Approval 1810574 is valid between October 2018 and October 2023

An entry, as above, will accordingly be included in the Water Fittings Directory on-line under the section headed, "Materials which have passed full tests of effect on water quality".

The Directory may be found at: www.wrasapprovals.co.uk/approvals-directory/

Yours Faithfully

Ian Hughes WRAS Approvals Manager

WRAS MATERIAL APPROVAL - MATERIALS WHICH HAVE PASSED FULL TESTS OF EFFECT ON WATER QUALITY

The material referred to in this letter is suitable for contact with water for domestic purposes. Approval of this material does not signify the approval of its mechanical or physical properties for any use.

Manufacturers or applicants may only quote in their sales literature terms which are used in this letter, namely that; 'the material as listed, having passed the tests of effect on water quality, is suitable for use in contact with wholesome water'

This may be abbreviated to 'Water Regulations Approval Scheme - Approved Material' or 'WRAS Approved Material'.

The scope of an Approval does not extend to rebranded materials unless otherwise agreed by the Scheme.

Use of the WRAS Approved Material Logo

Approval holders may use the WRAS Approved Material logo and make reference to any approval issued by WRAS Ltd. in respect of a particular material or range of materials provided the approval is, and remains valid.

Approval holders are entitled to use the logo on the packing, promotional literature and point of sale advertising Approved Materials.

Modifications to existing Approvals

It is a condition of WRAS Material Approval that NO changes or modifications to the Approved Material, be made without the Approval Holder first notifying WRAS Ltd. Full details of the proposed changes must be provided to the Scheme. Failure to comply with this condition will immediately invalidate a previously granted Approval.

Re-Approval

WRAS will write to you 1 year before the approval expires asking whether you would like to renew it. Please complete the relevant section of the MA3 application form which will be included with the letter and return to WRAS (via e-mail or post).

Please note it is the responsibility of the Approval Holder to ensure the Approval remains valid. WRAS Ltd. accepts no liability for the delay in granting approval where this is caused by circumstances outside of the Scheme's control.

Declaration of Performance 1404-CPR-2583 Chemfix CH+ (Bonded anchor)

Chemfix Products Ltd Mill Street East, Dewsbury, West Yorkshire, WF12 9BQ, UK

Intended use or uses of the construction p	product according to ETAG 001 part 1 and part 5
Generic type	Bonded anchor for anchorage of threaded rod and rebar.
Base material	cracked and un-cracked concrete C20/25 to C50/60 acc. to ENV 206:2000-12 Cracked: M12 and M16 un-cracked M8 to M24, Rebar 8mm to 25mm
Material	 a) Carbon galvanized steel class 5.8, 8.8 and 10.9 according to EN ISO 898-1 for dry internal conditions. b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions, external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. c) High resistant corrosion stainless steel 1.4529, 1.4565 to EN 10088 d) Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 and in un-cracked concrete only. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with post-installed reinforcing bars in concrete structures designed in accordance with EN1992-1-1: 2004 are not covered by this European Technical Approval.
Durability	50 years
Loading	static, quasi-static
Service temperature range	 a) -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C), b) -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
Use category	Category 1: dry and wet concrete.
Fire Resistance	NPD
Fire Reaction	NPD
ETA - 12/0024 issued by	CSTB Paris dated 17/01/2014
On the basis of	ETAG 001 Part 5:2013

Declared perf	ormances according to ETAG 001 parts 1 and 5							
Essential Chai	racteristics				Perforn	nance		
			M8	M10	M12	M16	M20	M24
Installation pa	arameters							
d	Diameter of anchor bolt or thread diameter	[mm]	8	10	12	16	20	24
d ₀	Nominal diameter of drill bit	[mm]	10	12	14	18	24	28
d _{fix}	Diameter of clearance hole in the fixture	[mm]	9	12	14	18	22	26
h	Minimum effective anchorage depth	[mm]	60	60	70	80	90	100
n _{eff}	Maximum effective anchorage depth	[mm]	160	200	240	320	400	480
h ₁	Depth of the drilling hole	[mm]	80	90	110	125	170	210
h _{min}	Minimum thickness of the concrete member	[mm]	hef +	30mm ≥ 1	00mm	ŀ	nef + 2do	
T _{inst}	Nominal torque moment	[Nm]	10	20	30	60	90	140
t _{fix}	Thickness to be fixed	[mm]						
S _{min}	Minimum spacing	[mm]	40	50	60	80	100	120
for $c \ge$	Edge distance	[mm]						
C _{min}	Minimum edge distance	[mm]	40	50	60	80	100	120
for s \geq	Anchor spacing	[mm]						
Pull-out failur	e mode							
	Characteristic bond resistance in un-cracked concrete class C20/25 temperature range a)	[MPa]	10.0	9.5	9.0	8.0	7.5	7.5
τRk,ucr	Characteristic bond resistance in un-cracked concrete class C20/25 temperature range b)	[MPa]	9.0	8.0	7.5	7.0	6.5	6.0
	Characteristic bond resistance in cracked concrete class C20/25 temperature range a)	[MPa]	-	-	3.5	3.5	-	-
τRk, cr	Characteristic bond resistance in cracked concrete class C20/25 temperature range b)	[MPa]	-	-	3.0	3.0	-	-
γ ₂	Partial safety factor	[-]	1.5	1.5	1.5	1.5	1.5	1.5
ψ _{c.ucr} C30/37	Increasing factor for un-cracked concrete C30/37	[-]			1.1	2		
ψ _{c.ucr} C40/50	Increasing factor for un-cracked concrete C40/50	[-]			1.2	3		
ψ _{c.ucr} C50/60	Increasing factor for un-cracked concrete C50/60	[-]			1.3	0		
ψ _{c.cr} C30/37	Increasing factor for cracked concrete C30/37	[-]	1.04					
ψ _{c.cr} C40/50	Increasing factor for cracked concrete C40/50	[-]			1.0	7		
ψ _{c,cr} C50/60	Increasing factor for cracked concrete C50/60	[-]			1.0	9		
Resistance for	r splitting failure							
S _{cr.sp}	Critical spacing (splitting)	[mm]			2 ccr	,sp		
C _{cr,sp}	Critical edge distance(splitting)	[mm]	For: h / h _{ef}	≥ 2,0 = 1,0 h _{ef}	• 2,0 > h / h _{ef} >	- 1,3 = 4,6 h _{ef} - 1	,8h ∙h/h _{ef} ≤	≤ 1,3 = ≤ 1,3

Declared performances according to ETAG 001 part 5 - Rebar									
Essential Char	racteristics				Pe	erforma	nce		
	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25		
Installation pa	arameters								
d	Diameter of anchor bolt or thread diameter	[mm]	8	10	12	14	16	20	25
d ₀	Nominal diameter of drill bit	[mm]	12	14	16	18	20	25	32
h	Minimum effective anchorage depth	[mm]	60	60	70	75	80	90	100
n _{eff}	Maximum effective anchorage depth	[mm]	160	200	240	280	320	400	500
h _{min}	Minimum thickness of the concrete member	[mm]	he	f + 30m 100mm	m≥ າ		hef -	+ 2do	
S _{min}	Minimum spacing	[mm]	40	50	60	70	80	100	125
C _{min}	Minimum edge distance	[mm]	40	50	60	70	80	100	125
Pull-out failur	e mode								
	Characteristic bond resistance in un-cracked concrete class C20/25		7.0	7 5	7.0	7.0	6 F	6 5	6.0
7 -1	temperature range a)	[IVIPa]	7.0	7.5	7.0	7.0	0.5	0.5	6.0
¢RK,UCI	Characteristic bond resistance in un-cracked concrete class C20/25 temperature range b)	[MPa]	6.5	6.5	6.0	6.0	6.0	5.5	5.5
	Characteristic bond resistance in cracked concrete class C20/25 temperature range a)	[MPa]	-	-	-	-	-	-	-
$ au_{Rk, cr}$	Characteristic bond resistance in cracked concrete class C20/25 temperature range b)	[MPa]	-	-	-	-	-	_	-
γ ₂	Partial safety factor	[-]				1.8			
Ψ _{c µcr} C30/37	Increasing factor for un-cracked concrete C30/37	[-]				1.12			
$\psi_{c,\mu cr}$ C40/50	Increasing factor for un-cracked concrete C40/50	[-]				1.23			
$\psi_{c \mu cr} C50/60$	$\Psi_{C,ucr}$ C50/60 Increasing factor for un-cracked concrete C50/60					1.30			
Ψ _{c cr} C30/37	crr C30/37 Increasing factor for cracked concrete C30/37		-						
$\psi_{c,cr}$ C40/50	cr C40/50 Increasing factor for cracked concrete C40/50 [-			_					
$\psi_{c,cr}$ C50/60 Increasing factor for cracked concrete C50/60 [-]						-			
Resistance for splitting failure									
S _{cr,sp}	Critical spacing (splitting)	[mm]				2 C cr,s	p		
C _{cr,sp}	Critical edge distance(splitting)	[mm]	For: $h / h_{ef} \ge 2,0 = 1,0 h_{ef} \cdot 2,0 > h / h_{ef} > 1,3 = 4,6 h_{ef} - 1,8 h \cdot h / h_{ef} \le 1,3 = \le 1,3$			• 1,3 =			

The performances of the product identified by the above identification code are in conformity with the declared performance. This declaration of performance is issued under the sole responsibility of Chemfix Products Ltd. Signed for and behalf of the manufacturer by:

Name and functions	Place and date of issue	Signature
URS JOOS - COMMERCIAL AND MARKETING DIRECTOR	DEWSBURY 16.09.2015	Mco)

CHEMFIX CH+, with post-installed rebar

Intended use or	uses of the construction pr	oduct according to ETAG 001 parts 1 and 5 EOTA TR023
Generic type		Bonded anchor for anchorage of post-installed rebar
Base material		Concrete C12/15 to C50/60 acc. to EN 206-1 non-carbonated concrete allowablechloride content of 0,40 % (Cl 0,40) related to the cement content according to EN 206-1
Use Material		Straight deformed reinforcing bars, diameter 8 - 16 mm, mechanical properties according Annex C, EN 1992-1-1 & EN 10080. (Class B & C are recommended).
Loading		Predominantly static loads
Service temperature range		-40°C to +40°C (max. short term temperature +80°C and max. long term temperature +50°C).
Use category 1		 Structures subject to dry internal conditions, i.e. exposure class X0 and XC1 of EC2 §3.3.4. Dry or wet concrete (use category 1). It must not be installed in flooded holes. Overhead installation is permissible. Hole drilling by hammer drill or by compressed air drilling
ETA - 14/0057 issued by		ETA DANMARK dated 18/03/2014
On the basis of		ETAG 001 Part 5:2013 & EOTA TR023

Installation Parameters

CE

Rebar Diameter	Ø8	Ø10	Ø12	Ø14	Ø16
Diameter of element D [mm]	8	10	12	14	16
Nominal diameter of drill bit do [mm]	10-12*	12-14*	14-16*	18	20

* Both given values for drill diameter can be used

Height of the rebar rib hrib:

The height of the rebar rib h_{rib} shall fulfil the following requirement: $0.05 * d \le h_{rib} \le 0.07 * d$ with: d = nominal diameter of the rebar element.

Table B2: Minimum concrete cover min c of bonded-in rebar depending on drilling method

Drilling method	Rebar diameter	Without drilling aid	With drilling aid
Hammer drilling	< 25mm	$30mm + 0.06 \cdot \ell_v \ge 2d_s$	$30mm + 0.02 \cdot \ell_v \ge 2d_s$
Compressed air drilling	< 25mm	$50 \text{mm} + 0.08 \cdot \ell_{y}$	$50 \text{mm} + 0.02 \cdot \ell_{y}$

The minimum concrete cover must be observed according EN 1992-1-1:2004

Table B3: Minimum anchorage length $^{1)}$ and lap splice length for C20/25 and maximum installation length l_{max}

Rebar	•	1 (mm)	1 (mm)	l _{max} (mm)	
Ød _s	$F_{y,k}$ [N/mm ²]	$I_{b,min}$ (IIIIII)	$I_{o,min}$ (IIIII)		
8mm	500	113	200	1000	
10mm	500	142	200	1000	
12mm	500	170	200	1200	
14mm	500	198	210	1400	
16mm	500	227	240	1600	

1) according to EN 1992-1-1:2004: $l_{b,min}(8.6)$ and $l_{o,min}(8.11)$ for good bond conditions and $a_6 = 1.0$ with maximum yeild stress for rebar B500 B and $y'_M = 1.15$.

Table B4: Minimum curing time

CE

Temperature in the concrete member	Minimum gelling time in dry concrete (100g mass) (mins)	Minimum gelling time in dry concrete (45g mass) (mins)
$\geq -5 - 0^{\circ}C$	25	38
≥+0 - 5°C	17	27
≥+10 - 20°C	12	20
≥+20 - 30°C	6	12
≥+30 - 35°C	3	10
\geq +35 - 40°C	2	9

Note. For a value of anchorage length or lap splice length higher than 400mm the maximum temperature in the concrete member shall be limited to $20 \,^{\circ}C$ "

Essential characteristics - Performance									
Rebar - Ø		Concrete class							
ds	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 mm	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6
10 mm	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6
12 mm	1,6	2	2,3	2,3	2,3	2,3	2,3	2,3	2,3
14 mm	1,6	2	2,3	2,7	3	3,4	3,4	3,4	3,4
16 mm	1,6	2	2,3	2,7	3	3,4	3,7	4	4,3

1) Tabulated values are for f_{bd} are valid for good bond conditions according to EN 1992-1-1:2004. For all other bond conditions multiply the values for f_{bd} by 0,7.

Table C2: Resistance to fire

HARMONIZED TECHNICAL SPECIFICATION: ETAG 001 PART 1 PARAGRAPH 5.2.2 AND TECHNICAL REPORT TR020					
ESSENTIAL CHARACTERISTICS PERFORMANCE					
Resistance to fire	NPD				

Table C3: Reaction to fire

HARMONIZED TECHNICAL SPECIFICATION: ETAG 001 PART 1 PARAGRAPH 5.2.1					
ESSENTIAL CHARACTERISTICS	PERFORMANCE				
Reaction to fire	In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.				

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of Chemfix Products Ltd by:

Place and date of issue: Dewsbury, 16.09.2015

Urs Joos, Commercial & Marketing Manager

ETA-Danmark A/S Göteborg Plads 1 DK-21590 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-19/0102 of 2022/06/22

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	Chemfix Injection System CH+ Max for post- installed rebar connections
Product family to which the above construction product belongs:	Post-installed rebar connections with Chemfix CH+ Max injection mortar
Manufacturer:	Chemfix Products Ltd Mill Street East Dewsbury West Yorkshire WF12 9BQ, UK Tel. +44 (0) 1924 453886 Fax +44 (0) 1924 431658 Internet www.chemfix.co.uk
Manufacturing plant:	Chemfix Products Ltd Mill Street East Dewsbury West Yorkshire WF12 9BQ, UK
This European Technical Assessment contains:	17 pages including 12 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	EAD 330087-01-0601, Systems for post-installed rebar connections with mortar
This version replaces:	The ETA with the same number issued on 2019-04- 05

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The subject of this assessment are the post-installed connections, by anchoring or overlap connection joint consisting of steel reinforcing bars (rebars) in existing structures made of normal weight concrete, using injection mortar Chemfix CH+ Max in accordance with the regulations for reinforced concrete construction. The design of the post-installed rebar connections shall be done in accordance with EN 1992-1-1 (Eurocode 2).

Reinforcing bars with diameters from 8 to 12 mm and Chemfix CH+ Max injection mortar are used for the post-installed rebar connections. The steel element is placed into a drilled hole filled with a mortar and is anchored by the bond between embedded element, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR2):

Reaction to fire: Rebar connections satisfy requirements for Class A1.

Resistance to fire: See annex C

Hygiene, health and the environment (BWR3):

No performance assessed.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the EAD 330087-01-06.01, Systems for post-installed rebar connections with mortar.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2022-06-22 by

honostern

Thomas Bruun Managing Director, ETA-Danmark

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet ww.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-22/0328 of 2022/06/08

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	Chemfix CH+ MAX – Standard and Tropical
Product family to which the above construction product belongs:	Bonded injection type anchor for use in concrete: sizes M8 to M24, rebar 8 to 25 mm
Manufacturer:	Chemfix Products Ltd Mill Street East Dewsbury West Yorkshire WF12 9BQ, UK Tel. +44 (0) 1924 453886 Fax +44 (0) 1924 431658 Internet www.chemfix.co.uk
Manufacturing plant:	Chemfix Products Ltd Mill Street East Dewsbury West Yorkshire WF12 9BQ, UK
This European Technical Assessment contains:	20 pages including 14 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete"

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Chemfix CH+ MAX is a bonded anchor (injection type) for concrete consisting of a cartridge with Chemfix injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M24 or a reinforcing bar in the range of diameter 8 to 25mm.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EOTA EAD 330499-01-0601, "Bonded fasteners for use in concrete" option 1 and 7.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 96/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2022-06-08 by

Thomas Bruun Managing Director, ETA-Danmark

Table C1: Characteristic values for steel tension resistance and steel shear resistance of threaded rods

Size				M8	M10	M12	M16	M20	M24
Cross	section area	As	[mm ²]	36.6	58	84.3	157	245	353
Char	acteristic tension resistance, Steel failure								
Steel	Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15	23	34	63	98	141
Steel	Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18	29	42	78	122	176
Steel	Property class 8.8	N _{Rk,s}	[kN]	29	46	67	125	196	282
Steel	Property class 10.9	N _{Rk,s}	[kN]	37	58	84	157	245	353
Steel	Property class 12.9	N _{Rk,s}	[kN]	44	70	101	188	294	424
Stain	ess steel A2, A4 and HCR, Property class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177
Stain	ess steel A2, A4 and HCR, Property class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247
Stain	ess steel A4 and HCR, Property class 80	$N_{Rk,s}$	[kN]	29	46	67	126	196	282
Char	acteristic tension resistance, Partial factor								
Steel	Property class 4.6 and 5.6	$\gamma_{\text{Ms,N}}$ 1)	[-]			2	,0		
Steel	Property class 4.8, 5.8 and 8.8	$\gamma_{\text{Ms,N}} \ ^{1)}$	[-]			1	,5		
Steel	Property class 10.9 and 12.9	$\gamma_{Ms,N}$ 1)	[-]			1	.4		
Stain	ess steel A2, A4 and HCR, Property class 50	$\gamma_{\text{Ms,N}}$ 1)	[-]			2,	86		
Stain	ess steel A2, A4 and HCR, Property class 70	$\gamma_{\text{Ms,N}}$ 1)	[-]			1,	87		
Stain	ess steel A4 and HCR, Property class 80	$\gamma_{Ms,N}$ 1)	[-]			1	,6		
Char	acteristic shear resistance, Steel failure								
	Steel, Property class 4.6 and 4.8	$V^0{}_{Rk,s}$	[kN]	7	12	17	31	49	71
	Steel, Property class 5.6 and 5.8	$V^0{}_{Rk,s}$	[kN]	9	15	21	39	61	88
arm	Steel, Property class 8.8	$V^0{}_{Rk,s}$	[kN]	15	23	34	63	98	141
ever	Steel, Property class 10.9	$V^0{}_{Rk,s}$	[kN]	18	29	42	79	123	177
out	Steel, Property class 12.9	$V^0{}_{Rk,s}$	[kN]	22	35	51	94	147	212
Nith	Stainless steel A2, A4 and HCR, Property class 50	$V^0{}_{Rk,s}$	[kN]	9	15	21	39	61	88
	Stainless steel A2, A4 and HCR, Property class 70	V ⁰ _{Rk,s}	[kN]	13	20	30	55	86	124
	Stainless steel A4 and HCR, Property class 80	V ⁰ _{Rk,s}	[kN]	15	23	34	63	98	141
	Steel, Property class 4.6 and 4.8	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449
	Steel, Property class 5.6 and 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560
Ē	Steel, Property class 8.8	$M^0_{Rk,s}$	[Nm]	30	60	105	266	519	896
/er a	Steel, Property class 10.9	M ⁰ _{Rk,s}	[Nm]	37	75	131	333	649	1123
hlev	Steel, Property class 12.9	M ⁰ _{Rk,s}	[Nm]	45	90	157	400	778	1347
Wit	Stainless steel A2, A4 and HCR, Property class 50	M ⁰ _{Rk,s}	[Nm]	19	37	66	167	325	561
	Stainless steel A2, A4 and HCR, Property class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784
	Stainless steel A4 and HCR, Property class 80	$M^0_{Rk,s}$	[Nm]	30	59	105	266	519	896
Char	acteristic shear resistance, Partial factor								
Steel	Property class 4.6 and 5.6	$\gamma_{\text{Ms,V}} \ ^{1)}$	[-]	1,67					
Steel	Property class 4.8, 5.8 and 8.8	$\gamma_{\text{Ms,V}} \ ^{1)}$	[-]			1,	25		
Steel	Property class 10.9 and 12.9	$\gamma_{\text{Ms,V}} \ ^{1)}$	[-]	1,50					
Stain	ess steel A2, A4 and HCR, Property class 50	$\gamma_{\text{Ms,V}} \ ^{1)}$	[-]			2,	38		
Stain	ess steel A2, A4 and HCR, Property class 70	$\gamma_{Ms,V}$ 1)	[-]			1,	56		
Stain	ess steel A4 and HCR, Property class 80	$\gamma_{\text{Ms,V}} \ ^{1)}$	[-]			1,	33		

¹⁾ in absence of national regulation

SYSTEM CH+ MAX

Annex C1 of European Technical Assessment ETA-22/0328

Performance for static and quasi-static loads: Resistances

Table C2: Characteristic values of ter rods	nsion lo	ads und	er stati	c and q	uasi-sta	atic for	threade	ed
Anchor size threaded rod			M8	M10	M12	M16	M20	M24
Steel failure								
Characteristic tension resistance	N _{Rk,s}	[kN]			see Tal	ble C1		
Partial factor	γ _{Ms,N}	[-]			see Tal	ble C1		
Combined Pull-out and Concrete cone failure ²⁾		•						
Characteristic bond resistance in concrete C20/2	5 – dry c	or wet con	crete for	hammer	drilling	(HD) and	CD	
Temperature range 40°C/24°C non-cracked concrete	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9	8,5
Temperature range 40°C/24°C cracked concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	3,5	3,5	3	3,5	3,5	3,5
Partial safety factor – dry or wet concrete	γinst	[-]		1,2			1,4	
Characteristic bond resistance in non-cracked co	20/25 – flc	oded ho	oles for ha	ammer d	rilling (H	ID)		
Temperature range 40°C/24°C non-cracked concrete	$\tau_{Rk,ucr}$	[N/mm²]	11	10	10	9	7,5	7
Temperature range 40°C/24°C cracked concrete	τRk,cr	[N/mm²]	3,5	3,5	3	3,5	3	3
Partial safety factor – flooded holes	γinst	[-]	1,2 1,4					
Characteristic bond resistance in non-cracked concrete	e C20/25 -	- dry or we	t concrete	e for hollo v	v drill bits	s (HDB) –	dust free	system
Temperature range 40°C/24°C non-cracked concrete	τ _{Rk,ucr}	[N/mm²]	7	7	7.5	8	8	8.5
Temperature range 40°C/24°C cracked concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	3,5	3,5	4	3,5	3,5	3,5
Partial safety factor – dry or wet concrete	γinst	[-]			1,2			1,4
Increasing factor for τ_{-}	Ψc	C30/37	1,08 1,					1,00
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked for hammer drilling		C40/50	1,15 1,0					1,00
		C50/60	1,20 1,0					1,00
Increasing factor for $\tau_{Rk,cr}$ in cracked concrete for		C30/37	1,08 1,00					
nammer dniling	Ψc	C40/50	1,15 1,00					
		C30/37	1,20		1	1,00		
Increasing factor for $\tau_{Rk,ucr}$ in non-cracked concrete	We	C40/50			1,	00		
for hollow drilling	ψυ	C50/60			1,	00		
		C30/37	1,20		,	1,00		
Increasing factor for $\tau_{Rk,cr}$ in cracked concrete for	ψc	C40/50	1,36			1,00		
		C50/60	1,50			1,00		
Reduction factor in cracked or non-cracked concrete C20/25 for all drilling methods	Ψ^0 sus	[-]			0,7	794		
Factor for determination of the concrete cone failure	k _{ucr,N}	[-]	1	1,0 (based	d on concre	ete cylinder	strength f	·k)
Factor for determination of the concrete cone failure	K _{cr,N}	[-]	7,7					
Edge distance for concrete cone failure	C _{cr,N}	[mm]			1,5	5 h _{ef}		
Axial distance for concrete cone failure	Scr,N	[mm]			2 0	Ccr,N		
SYSTEM CH+ Performance for static, quasi-st	Annex C2 of European Technical Assessmen ETA-22/0328.				nent			

Splitting failure ²⁾							
	h / h	hef ⁴⁾ ≥ 2,0	1,0 h _{ef}	h/h _{ef}		_	
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} ⁴⁾ > 1,3	3 h _{ef} - 1 h	1,3			
	h /	h _{ef} ⁴⁾ ≤ 1,3	1,7 h _{ef}		1,0∙h _{ef}	1,7 ⋅h _{ef}	↓ c _{cr,sp}
Spacing	S _{cr,sp}	[mm]			2 C _{cr,sp}		
 In absence of national regulations ²⁾ Calculation of concrete and splitting, see annex B⁻ 	3) 1 4)	Explanation h concrete	ns, see annex f member thickn	31 iess, h _{ef} effe	ective anchor	age depth	

Table C3: Displacements under tension load

Chemfix CH+ MAX With Hammer drill drilling (CD)	with thread ing (HD) or o	ded rods compressed air	M8	M10	M12	M16	M20	M24
Temperature range a	a ⁵⁾ : 40°C / 24	٥C						
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,11	0,11	0,10	0,11	0,12	0,10
Displacement	0,28	0,18	0,82	0,76	0,22	0,30		
Chemfix CH+ MAX for Hollow drilling	with thread HDB (dust-f	led rods free system)	M8	M10	M12	M16	M20	M24
Temperature range a	a ⁵⁾ : 40°C / 24	٥°C						
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,10	0,12	0,15	0,14	0,14	0,13
Displacement	[mm/(N/mm ²)]	0,49	0,19	0,38	0,52	0,14	0,19	

⁵⁾ Explanation see annex B1

Table C4: Displacements under shear load for all types of drilling for threaded rods

Chemfix CH+ MAX with thre	M8	M10	M12	M16	M20	M24		
Displacement	δ _{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03
Displacement	δ_{V^∞}	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05

SYSTEM CH+ MAX

Annex C3 of European Technical Assessment ETA-22/....

Performance for static, quasi-static and seismic loads: Displacements

Table C5: Characteri	istic valu	ies for st	eel ten	sion res	sistance	and te	nsion lo	ad valu	es for re	ebar	
Chemfix CH+ MAX with	th rebar		φ8	φ 10	φ 12	φ14	φ16	φ 20	φ 24	φ 25	
Steel failure											
Characteristic tension resistance	N _{Rk,s}	[kN]				,	$A_{s} \cdot f_{uk}^{1)}$				
Cross section area	As	[mm ²]	50	79	113	154	201	314	452	491	
Partial safety factor	γMs,N ²⁾	[-]					1,4				
Combined Pull-out and	Concrete c	one failure	3)								
Diameter of rebar	d	[mm]	8	10	12	14	16	20	24	25	
Characteristic bond resista	ance in non	-cracked co	ncrete C2	20/25 – dry	or wet co	ncrete for l	hammer d	rilling (HD) and CD		
Temperature range a ⁴⁾ : 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	6	6	6	5,5	5,5	5,5	5,5	5,5	
Partial safety factor – dry or wet concrete	γ inst ²⁾	[-]		1,2				1,4			
Characteristic bond resista	ance in non	-cracked co	ncrete C2	20/25 – floc	ded holes	for hamm	ner drilling	(HD) and	CD	1	
Temperature range a ⁴⁾ : 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	6	6	6	5,5	5,5	4,5	4,5	4,5	
Partial safety factor – flooded holes	γinst	[-]	1	,2			1	,4			
Characteristic bond resistan	nce in non-	cracked cor	crete C2	0/25 – dry (or wet con	crete for h	ollow drill	bits (HDE	3) – dust fi	ree	
Temperature range a ⁴⁾ : 40°C/24°C	τ _{Rk,ucr}	[N/mm²]	5	5	5,5	5,5	5,5	5,5	5,5	5,5	
Partial safety factor – dry or wet concrete	γinst	[-]			1			1,4			
Increasing factor for		C30/37	1,00	1,04		1,	08		1,	13	
T _{Rk,ucr in non-cracked concrete}	ψc	C40/50	1,00	1,07		1,	15		1,23		
		C50/60	1,00	1,10		1,	20		1,32		
Factor for determination of the concrete cone failure	k _{ucr,N}	[-]			11,0 (base	d on concr	ete cylinder	strength fcl	<)		
Factor for determination of the concrete cone failure	k _{cr,N}	[-]				7	7,7				
Splitting failure ³⁾											
	h / h	n _{ef} ⁵⁾ ≥ 2,0	1,0	h _{ef}		2,0					
Edge distance c _{cr,sp} [mm] for	2,0 > h /	h _{ef} ⁵⁾ > 1,3	3 h _e	_{ef} - 1 h		1,3		\searrow			
	h /	h _{ef} ⁵⁾ ≤ 1,3	1,7	h _{ef}		-	1.0 [.] h _{of}	1,7 ·h _{ef}	→ c _{cr,sp}		
Spacing	Scr,sp	[mm]				:	2 C _{cr,sp}	,, ···ei			
⁾ f _{uk} shall be taken from the ⁽²⁾ in absence of national re ⁽³⁾ Calculation of concrete a ⁽⁴⁾ Explanations, see annex ⁽⁵⁾ h concrete member thick depth	e specificat gulation and splitting x B1 kness, h _{ef}	tions of rein g, see anne effective ar	nforcing b ex B1 nchorage	pars							
	C1\$7		СТ I Л.Л.А.	V					nnov C/	1	
Performance	SY ce for stat	ic and qua	n+ MA	A loads: Re	esistance	8		Annex C4 of European Technical Assessment ETA-22/0328			

Fable C6: Displacements under tens	sion load for rebar
------------------------------------	---------------------

_

Chemfix CH+ MA drilling (HD) and 0	ф 8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 24/ φ 25		
Temperature range	a ⁴⁾ : 40°C /	24°C							
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,03	0,03	0,04	0,04	0,07	0,07	0,10
Displacement	Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]		0,11	0,11	0,15	0,21	0,26	0,26	0,38
Chemfix CH+ MA drilling dust free	φ8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 25		
Temperature range	a ⁴⁾ : 40°C/	24°C							
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,16	0,10	0,03	0,03	0,04	0,04	0,04
Displacement $\delta_{N\infty}$ [mm/(N/mm ²)]			0,75	0,45	0,15	0,16	0,17	0,18	0,19

Table C7: Characteristic steel shear resistance for rebar

Chemfix CH+ MAX with reba	Chemfix CH+ MAX with rebar					φ14	φ 16	φ 20	φ 25
Steel failure without lever arm									
Characteristic shear resistance	V _{Rk,s}	[kN]			0,	50 • A _s • f _u	k ¹⁾		
Cross section area	As	[mm ²]	50	79	113	154	201	314	491
Partial safety factor	γms,n ²⁾	[-]	1,5						
Steel failure with lever arm									
Characteristic bending moment	M^0 Rk,s	[Nm]	1.2 • W _{el} • f _{uk} ¹⁾						
Elastic section modulus	Wel	[Nm]	50	98	170	269	402	785	1534
Partial safety factor	γMs,N ²⁾	[-]				1,5			
Concrete pryout failure									
Factor	k ₈	[-]		1,0 2,0	fo fo	r h _{ef} < 60n r h _{ef} ≥ 60n	าm าm		
Partial safety factor	үмс	[-]				1,5			
Concrete edge failure									
Partial safety factor	γ _{Mc} ¹⁾	[-]				1,5			

 $^{\rm 1)}\,f_{uk}$ shall be taken from the specifications of reinforcing bars $^{\rm 2)}$ In absence of national regulations

Table C8: Displacements under shear load for rebar

Chemfix CH+ MAX with rebar			φ8	φ 10	φ 12	φ 14	φ 16	φ 20	φ 25
Displacement	δ _{V0}	[mm/kN]	0,05	0,05	0,05	0,04	0,04	0,04	0,03
Displacement	δ_{V^∞}	[mm/kN]	0,08	0,08	0,07	0,06	0,06	0,05	0,05

SYSTEM CH+ MAX

Annex C5 of European Technical Assessment ETA-22/0328

Performance for static and quasi-static loads: Resistances

Table C9: Resistance to fire	
ESSENTIAL CHARACTERISTICS	PERFORMANCE
Resistance to fire	No performance assessed

Table C10: Reaction to fire

ESSENTIAL CHARACTERISTICS	PERFORMANCE
Reaction to fire	In the final application, the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not contribute to fire growth or to the fully developed fire and they have no influence on the smoke hazard.

SYSTEM CH+ MAX

Performance for exposure to fire

Annex C6 of European Technical Assessment ETA-22/0328

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet ww.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-22/0381 of 20/06/2022

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Chemfix Injection System CH+ MAX
Bonded injection type anchor for use in masonry: sizes M6 to M12
Chemfix Products Ltd Mill Street East Dewsbury West Yorkshire WF12 9BQ, UK Tel. +44 (0) 1924 453886 Fax +44 (0) 1924 431658 Internet www.chemfix.co.uk
Chemfix Products Ltd Mill Street East Dewsbury West Yorkshire WF12 9BQ, UK
21 pages including 15 annexes which form an integral part of the document
EAD 330076-00-0604, Metal injection anchors for use in masonry

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Chemfix CH+ MAX is a bonded anchor (injection type) for use in masonry consisting of a cartridge with Chemfix injection mortar a perforated nylon sleeve, and an anchor rod with hexagon nut and washer in the range of M6, M8, M10 and M12.

The product specification is given in annex A.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and masonry.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

2 Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex C.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex C.

Hygiene, health and the environment (BWR3):

No performance assessed

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Other Basic Requirements are not relevant.

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with EAD 330076-00-0604, Metal injection anchors for use in masonry.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking.

Issued in Copenhagen on 2022-06-20 by

Thomas Bruun Managing Director, ETA-Danmark

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878 Issue date: 22/02/2022 Revision date: 19/04/2022 Supersedes version of: 28/03/2022 Version: 1.1

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product form :	
UFI :	HCCN-HTF8-DG04-SF4K
Type of product :	A Chemical anchoring application
Product group :	Trade product

1.2. Relevant identified uses of the substance or mixture and uses advised against

1.2.1. Relevant identified uses

Main use category	
Use of the substance/mixture	
Function or use category	

- : Industrial use, Professional use
- : A Chemical anchoring application
- : Building and construction work

1.2.2. Uses advised against

No additional information available

1.3. Details of the supplier of the safety data sheet

Chemfix Products Limited A Briolf Group Company Ctra. N-II, km 706,5 17457 RIUDELLOTS DE LA SELVA (Girona) SPAIN T +44 (0)1924 453886/+34 872 729 763 - F +44 (0)1924 458995 sds@chemfix.co.uk - www.chemfix.co.uk

1.4. Emergency telephone number

Emergency number

: Emergency Number Association (EENA) : 112 / UK Manufacturer +44 (0)1924 431679

Country	Organisation/Company	Address	Emergency number	Comment
United Kingdom	National Poisons Information Service (Birmingham Centre) City Hospital	Dudley Road B18 7QH Birmingham	0344 892 0111	Only for healthcare professionals

SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification according to Regulation (EC) No. 1272/2008 [CLP] Serious eye damage/eye irritation, Category 2 H319 Skin sensitisation, Category 1 H317 Full text of H- and EUH-statements: see section 16 Adverse physicochemical, human health and environmental effects May cause an allergic skin reaction. Causes serious eye irritation. Image: Classification (EC) No. 1272/2008 [CLP] Hazard pictograms (CLP) :

GHS07

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Signal word (CLP) Contains	 Warning 2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRYLATE, METHACRYLIC ACID, MONOESTER WITH PROPANE-1,2-DIOL, REACTION MASS OF 2,2'-[(4- METHYLPHENYL)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- HYDROXYETHOXY)ETHYL](4-METHYLPHENYL)AMINO]-
Hazard statements (CLP)	: H317 - May cause an allergic skin reaction. H319 - Causes serious eye irritation.
Precautionary statements (CLP)	 P261 - Avoid breathing dust/fume/gas/mist/vapours/spray. P264 - Wash hands, forearms and face thoroughly after handling. P272 - Contaminated work clothing should not be allowed out of the workplace. P280 - Wear protective clothing, eye protection, face protection. P302+P352 - IF ON SKIN: Wash with plenty of soap and water. P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

2.3. Other hazards

Contains no PBT/vPvB substances ≥ 0.1% assessed in accordance with REACH Annex XIII

The mixture does not contain substance(s) included in the list established in accordance with Article 59(1) of REACH for having endocrine disrupting properties, or is not identified as having endocrine disrupting properties in accordance with the criteria set out in Commission Delegated Regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at a concentration equal to or greater than 0,1 %

Component	
REACTION MASS OF 2,2'-[(4-	The mixture does not contain substance(s) included in the list established in accordance
METHYLPHENYL)IMINO]BISETHANOL AND	with Article 59(1) of REACH for having endocrine disrupting properties, or is not identified
ETHANOL 2-[[2-(2-HYDROXYETHOXY)ETHYL](4-	as having endocrine disrupting properties in accordance with the criteria set out in
METHYLPHENYL)AMINO]-	Commission Delegated Regulation (EU) 2017/2100 or Commission Regulation (EU)
	2018/605 at a concentration equal to or greater than 0,1 %

SECTION 3: Composition/information on ingredients

3.1. Substances

Not applicable

3.2. Mixtures

Name	Product identifier	%	Classification according to Regulation (EC) No. 1272/2008 [CLP]
VINYL TOLUENE.	CAS-No.: 25013-15-4 EC-No.: 246-562-2 REACH-no: 01-2119622074- 50	<10	Flam. Liq. 3, H226 Acute Tox. 4 (Inhalation), H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Asp. Tox. 1, H304 Aquatic Chronic 3, H412
2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRYLATE	CAS-No.: 109-16-0 EC-No.: 203-652-6 REACH-no: 01-2119969287- 21	3 – 10	Skin Sens. 1, H317
METHACRYLIC ACID, MONOESTER WITH PROPANE-1,2-DIOL	CAS-No.: 27813-02-1 EC-No.: 248-666-3 REACH-no: 01-2119490226- 37	3 – 10	Eye Irrit. 2, H319 Skin Sens. 1, H317
1,1'-(P-TOLYLIMINO)DIPROPAN-2-OL	CAS-No.: 38668-48-3 EC-No.: 254-075-1 REACH-no: 01-2119980937- 17	< 1	Acute Tox. 2 (Oral), H300 Eye Irrit. 2, H319 Aquatic Chronic 3, H412

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Name	Product identifier	%	Classification according to Regulation (EC) No. 1272/2008 [CLP]
REACTION MASS OF 2,2'-[(4- METHYLPHENYL)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2-HYDROXYETHOXY)ETHYL](4- METHYLPHENYL)AMINO]-	-	< 1	Acute Tox. 4 (Oral), H302 Skin Irrit. 2, H315 Eye Dam. 1, H318 Skin Sens. 1, H317 Aquatic Chronic 3, H412
P-BENZOQUINONE	CAS-No.: 106-51-4 EC-No.: 203-405-2 EC Index-No.: 606-013-00-3 REACH-no: 01-2119933861- 35	< 1	Acute Tox. 3 (Oral), H301 Acute Tox. 3 (Inhalation), H331 Skin Irrit. 2, H315 Eye Irrit. 2, H319 STOT SE 3, H335 Aquatic Acute 1, H400 (M=10)

Full text of H- and EUH-statements: see section 16

SECTION 4: First aid measures	
4.1. Description of first aid measures	;
First-aid measures after inhalation First-aid measures after skin contact First-aid measures after eye contact	 Remove person to fresh air and keep comfortable for breathing. Wash skin with plenty of water. Take off contaminated clothing. If skin irritation or rash occurs: Get medical advice/attention. Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy
First-aid measures after ingestion	to do. Continue rinsing. If eye irritation persists: Get medical advice/attention. : Call a poison center or a doctor if you feel unwell.
4.2. Most important symptoms and e	nects, both acute and delayed
Symptoms/effects after skin contact Symptoms/effects after eye contact	May cause an allergic skin reaction.Eye irritation.
4.2 Indication of any immediate mod	ical attention and special treatment needed

Treat symptomatically.

SECTION 5: Firefighting measures	
5.1. Extinguishing media	
Suitable extinguishing media	: Water spray. Dry powder. Foam.
5.2. Special hazards arising from the substa	nce or mixture
Hazardous decomposition products in case of fire	: Toxic fumes may be released.
5.3. Advice for firefighters	
Protection during firefighting	: Do not attempt to take action without suitable protective equipment. Self-contained breathing apparatus. Complete protective clothing.

SECTION 6: Accidental release measures
6.1. Personal precautions, protective equipment and emergency procedures
6.1.1. For non-emergency personnel

6.1.1. For non-emergency personne

Emergency procedures

: Ventilate spillage area. Avoid contact with skin and eyes. Avoid breathing dust/fume/gas/mist/vapours/spray.

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

6.1.2. For emergency responders	
Protective equipment	: Do not attempt to take action without suitable protective equipment. For further information refer to section 8: "Exposure controls/personal protection".
6.2. Environmental precautions	
Avoid release to the environment.	
6.3. Methods and material for containment a	nd cleaning up
Methods for cleaning up Other information	Mechanically recover the product.Dispose of materials or solid residues at an authorized site.
6.4. Reference to other sections	
For further information refer to section 13.	
SECTION 7: Handling and storage	
7.1. Precautions for safe handling	
Dress, tiens for onfo handling	

Precautions for safe handling	: Ensure good ventilation of the work station. Avoid contact with skin and eyes. Avoid
	breathing dust/fume/gas/mist/vapours/spray. Wear personal protective equipment.
Hygiene measures	: Contaminated work clothing should not be allowed out of the workplace. Wash
	contaminated clothing before reuse. Do not eat, drink or smoke when using this produc
	Always wash hands after handling the product.

7.2. Conditions for safe storage, including a	iny incompatibilities
Storage conditions	: Store in a well-ventilated place. Keep cool.

7.3. Specific end use(s)

Building and construction work.

SECTION 8: Exp	oosure controls/p	personal protection
-----------------------	-------------------	---------------------

8.1. Control parameters

8.1.1 National occupational exposure and biological limit values

No additional information available

8.1.2. Recommended monitoring procedures

No additional information available

8.1.3. Air contaminants formed

No additional information available

8.1.4. DNEL and PNEC

No additional information available

8.1.5. Control banding

No additional information available

8.2. Exposure controls

8.2.1. Appropriate engineering controls

Appropriate engineering controls:

Ensure good ventilation of the work station.

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

8.2.2. Personal protection equipment

Personal protective equipment symbol(s):

8.2.2.1. Eye and face protection

Eye protection: Safety glasses

8.2.2.2. Skin protection

Skin and body protection:

Wear suitable protective clothing

Hand protection:

Chemical resistant gloves (according to European standard EN 374 or equivalent)

Hand protection					
Туре	Material	Permeation	Thickness (mm)	Penetration	Standard
Disposable gloves, Reusable gloves	Nitrile rubber (NBR), Butyl rubber, Viton® II	6 (> 480 minutes)	0.4	As the product is a preperation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.	EN ISO 374

8.2.2.3. Respiratory protection

Respiratory protection:

In case of insufficient ventilation, wear suitable respiratory equipment. EN141

8.2.2.4. Thermal hazards

No additional information available

8.2.3. Environmental exposure controls

Environmental exposure controls:

Avoid release to the environment.

SECTION 9: Physical and chemical properties			
9.1. Information on basic physical and chemical properties			
Physical state	: Solid		
Colour	: Beige.		
Appearance	: Paste.		
Odour	: Characteristic odour.		
Odour threshold	: Not available		
Melting point	: Not available		
Freezing point	: Not applicable		
Boiling point	: Not available		
Flammability	: Non flammable.		
Explosive limits	: Not applicable		
Lower explosion limit	: Not applicable		
Upper explosion limit	: Not applicable		

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Flash point Auto-ignition temperature Decomposition temperature pH pH solution Viscosity, kinematic Viscosity, dynamic Solubility Partition coefficient n-octanol/water (Log Kow) Vapour pressure Vapour pressure Vapour pressure at 50 °C Density Relative density Relative density Relative vapour density at 20 °C Particle size Particle size Particle size distribution Particle shape Particle aspect ratio		Not applicable Not applicable Not available Not available Not available Not available > 100000 cP Brookfield HB DV1 viscometer Material insoluble in water. Not available Not available Not available Not available 1.68 – 1.69 0.6 hPa Not available Not available Not available Not available Not available Not available Not available Not available Not available Not available
Particle size Particle size distribution	:	Not available Not available
Particle shape Particle aspect ratio	:	Not available Not available
Particle aggregation state Particle agglomeration state	:	Not available Not available
Particle dustiness	:	Not available

9.2. Other information

9.2.1. Information with regard to physical hazard cla	asses
No additional information available	
9.2.2. Other safety characteristics	
VOC content : Additional information :	180 g/l Solid suspension - classified as non-flammable according to results from Test N.1 test method for readily combustible solids.

SECTION 10: Stability and reactivity

10.1. Reactivity

The product is non-reactive under normal conditions of use, storage and transport.

10.2. Chemical stability

Stable under normal conditions.

10.3. Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

10.4. Conditions to avoid

None under recommended storage and handling conditions (see section 7).

10.5. Incompatible materials

No additional information available

10.6. Hazardous decomposition products

Under normal conditions of storage and use, hazardous decomposition products should not be produced.

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Acute toxicity (oral)

: Not classified

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Acute toxicity (dermal):Acute toxicity (inhalation):	Not classified Not classified			
2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRYLATE (109-16-0)				
LD50 oral rat	10837 mg/kg Source: NLM,THOMSON			
METHACRYLIC ACID, MONOESTER WITH PR	OPANE-1,2-DIOL (27813-02-1)			
LD50 oral rat	> 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 401 (Acute Oral Toxicity)			
LD50 dermal rat	> 5000 mg/kg			
LD50 dermal rabbit	> 5000 mg/kg bodyweight Animal: rabbit, Animal sex: male			
1,1'-(P-TOLYLIMINO)DIPROPAN-2-OL (38668-	48-3)			
LD50 oral rat	25 mg/kg bw/day			
LD50 dermal rat	> 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other:, Guideline: other:			
P-BENZOQUINONE (106-51-4)				
LD50 oral rat	197 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 423 (Acute Oral toxicity - Acute Toxic Class Method)			
VINYL TOLUENE. (25013-15-4)				
LD50 oral rat	3680 mg/kg			
LD50 dermal	4490 mg/kg			
REACTION MASS OF 2,2'-[(4-METHYLPHENYL)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- HYDROXYETHOXY)ETHYL](4-METHYLPHENYL)AMINO]-				
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]-			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- /L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2-(L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other:			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation :	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- /L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Serious eye damage/irritation Serious eye damage/irritation	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skip reaction			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified Not classified			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity P-BENZOQUINONE (106-51-4)	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified Not classified			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity HARC group	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified Not classified 3 - Not classifiable			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity P-BENZOQUINONE (106-51-4) IARC group VINYL TOLUENE. (25013-15-4)	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified Not classified 3 - Not classifiable			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity P-BENZOQUINONE (106-51-4) IARC group VINYL TOLUENE. (25013-15-4) IARC group	L)IMINOJBISETHANOL AND ETHANOL 2-[[2-(2-(1)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified 3 - Not classifiable 3 - Not classifiable			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity IARC group VINYL TOLUENE. (25013-15-4) IARC group Reproductive toxicity	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified Not classified 3 - Not classifiable 3 - Not classifiable Not classified			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity IARC group VINYL TOLUENE. (25013-15-4) IARC group Reproductive toxicity STOT-single exposure	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2-(L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified 3 - Not classifiable 3 - Not classified Not classified			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity IARC group VINYL TOLUENE. (25013-15-4) IARC group Reproductive toxicity STOT-single exposure P-BENZOQUINONE (106-51-4)	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2-(L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other:, 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified 3 - Not classifiable 3 - Not classified Not classified Not classified 3 - Not classified			
REACTION MASS OF 2,2'-[(4-METHYLPHENY HYDROXYETHOXY)ETHYL](4-METHYLPHENY LD50 oral rat LD50 dermal rat Skin corrosion/irritation Skin corrosion/irritation Serious eye damage/irritation Respiratory or skin sensitisation Germ cell mutagenicity Carcinogenicity IARC group VINYL TOLUENE. (25013-15-4) IARC group Reproductive toxicity STOT-single exposure STOT-single exposure	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- (L)AMINO]- 619 mg/kg bodyweight Animal: rat, Animal sex: male, Guideline: OECD Guideline 401 (Acute Oral Toxicity), Guideline: EU Method B.1 (Acute Toxicity (Oral)), Remarks on results: other., 95% CL: 305 - 1256 > 2000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 402 (Acute Dermal Toxicity), Guideline: EU Method B.3 (Acute Toxicity (Dermal)), Guideline: EPA OPPTS 870.1200 (Acute Dermal Toxicity), Guideline: other: Not classified Causes serious eye irritation. May cause an allergic skin reaction. Not classified Not classified 3 - Not classifiable Not classified Not classified Not classified May cause respiratory irritation.			

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRYLATE (109-16-0)		
LOAEC (inhalation, rat, gas, 90 days)	350 ppm Animal: rat, Guideline: OECD Guideline 413 (Subchronic Inhalation Toxicity: 90- Day Study), Remarks on results: other:	
NOAEL (oral, rat, 90 days)	1000 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)	
NOAEC (inhalation, rat, gas, 90 days)	100 ppm Animal: rat, Guideline: OECD Guideline 413 (Subchronic Inhalation Toxicity: 90- Day Study), Remarks on results: other:	
METHACRYLIC ACID, MONOESTER WITH PROPANE-1,2-DIOL (27813-02-1)		
LOAEC (inhalation, rat, gas, 90 days)	350 ppm Animal: rat, Guideline: OECD Guideline 413 (Subchronic Inhalation Toxicity: 90- Day Study), Remarks on results: other:	
NOAEL (oral, rat, 90 days)	300 mg/kg bodyweight Animal: rat, Guideline: OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)	
NOAEC (inhalation, rat, gas, 90 days)	100 ppm Animal: rat, Guideline: OECD Guideline 413 (Subchronic Inhalation Toxicity: 90- Day Study), Remarks on results: other:	
VINYL TOLUENE. (25013-15-4)		
NOAEC (inhalation, rat, gas, 90 days)	60 ppm Animal: rat, Remarks on results: other:	
Aspiration hazard :	Not classified	
CH+ MAX COMP A		
Viscosity, kinematic	Not applicable	
11.2. Information on other hazards		

No additional information available

SECTION 12: Ecological information		
12.1. Toxicity		
Ecology - general :	The product is not considered harmful to aquatic organisms nor to cause long-term adverse effects in the environment.	
(acute)		
Hazardous to the aquatic environment, long-term : (chronic)	Not classified	
Not rapidly degradable		
2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRY	LATE (109-16-0)	
LC50 - Fish [1]	16.4 mg/l Test organisms (species): Danio rerio (previous name: Brachydanio rerio)	
METHACRYLIC ACID, MONOESTER WITH PROPANE-1,2-DIOL (27813-02-1)		
LC50 - Fish [1]	233.174 mg/l Source: ECOSAR	
EC50 - Crustacea [1]	> 143 mg/l Test organisms (species): Daphnia magna	
EC50 - Other aquatic organisms [1]	> 130 mg/l	
EC50 72h - Algae [1]	> 97.2 mg/l Test organisms (species): Pseudokirchneriella subcapitata (previous names: Raphidocelis subcapitata, Selenastrum capricornutum)	
NOEC (chronic)	45.2 mg/l Test organisms (species): Daphnia magna Duration: '21 d'	
NOEC chronic crustacea	45.2 mg/l	

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

1,1'-(P-TOLYLIMINO)DIPROPAN-2-OL (38668-4	48-3)
LC50 - Fish [1]	17 mg/l Test organisms (species): Danio rerio (previous name: Brachydanio rerio)
EC50 - Crustacea [1]	28.8 mg/l Test organisms (species): Daphnia magna
EC50 72h - Algae [1]	245 mg/l Test organisms (species): Desmodesmus subspicatus (previous name: Scenedesmus subspicatus)
P-BENZOQUINONE (106-51-4)	
LC50 - Fish [1]	0.045 mg/l Source: Toxic Substances Information Summary
VINYL TOLUENE. (25013-15-4)	
LC50 - Fish [1]	5.2 mg/l Test organisms (species): Pimephales promelas
EC50 - Crustacea [1]	1.3 mg/l Test organisms (species): Daphnia magna
EC50 72h - Algae [1]	4.3 mg/l Test organisms (species): Pseudokirchneriella subcapitata (previous names: Raphidocelis subcapitata, Selenastrum capricornutum)
ErC50 algae	2.6 mg/l Source: ECHA
NOEC chronic fish	2.6 mg/l
REACTION MASS OF 2,2'-[(4-METHYLPHENYI HYDROXYETHOXY)ETHYL](4-METHYLPHENY	L)IMINO]BISETHANOL AND ETHANOL 2-[[2-(2- /L)AMINO]-
LC50 - Fish [1]	100 mg/l
EC50 - Crustacea [1]	48 mg/l Test organisms (species): Daphnia magna
EC50 - Other aquatic organisms [1]	100 mg/l
EC50 72h - Algae [1]	> 100 mg/l Test organisms (species): Pseudokirchneriella subcapitata (previous names: Raphidocelis subcapitata, Selenastrum capricornutum)

12.2. Persistence and degradability

No additional information available

12.3. Bioaccumulative potential

2,2'-ETHYLENEDIOXYDIETHYL DIMETHACRY	LATE (109-16-0)
Partition coefficient n-octanol/water (Log Pow)	1.88 Source: ChemIDplus
METHACRYLIC ACID, MONOESTER WITH PRO	OPANE-1,2-DIOL (27813-02-1)
Partition coefficient n-octanol/water (Log Pow)	0.48
1,1'-(P-TOLYLIMINO)DIPROPAN-2-OL (38668-4	48-3)
Partition coefficient n-octanol/water (Log Pow)	2.1 Source: ECHA
P-BENZOQUINONE (106-51-4)	
Partition coefficient n-octanol/water (Log Pow)	0.2 Source: HSDB
VINYL TOLUENE. (25013-15-4)	
Partition coefficient n-octanol/water (Log Pow)	3.35 Source: ECHA

12.4. Mobility in soil

No additional information available

12.5. Results of PBT and vPvB assessment

No additional information available

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

5. Endocrine disrupting properties	
dditional information available	
7. Other adverse effects	
dditional information available	
TION 13: Disposal considerations	

13.1. Waste treatment methods

Waste treatment methods

: Dispose of contents/container in accordance with licensed collector's sorting instructions.

SECTION 14: Transport information

In accordance with ADR / IME	DG / IATA / ADN / RID			
ADR	IMDG	ΙΑΤΑ	ADN	RID
14.1. UN number or ID n	umber			
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated
14.2. UN proper shippin	g name			
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated
14.3. Transport hazard o	class(es)			
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated
14.4. Packing group				
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated
14.5. Environmental haz	zards			
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated
No supplementary informatio	on available			

14.6. Special precautions for user

Overland transport

Not regulated

Transport by sea Not regulated

Air transport Not regulated

Inland waterway transport

Not regulated

Rail transport Not regulated

14.7. Maritime transport in bulk according to IMO instruments

Not applicable

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

15.1.1. EU-Regulations

Contains no REACH substances with Annex XVII restrictions

Contains no substance on the REACH candidate list

Contains no REACH Annex XIV substances

Contains no substance subject to Regulation (EU) No 649/2012 of the European Parliament and of the Council of 4 July 2012 concerning the export and import of hazardous chemicals.

Contains no substance subject to Regulation (EU) No 2019/1021 of the European Parliament and of the Council of 20 June 2019 on persistent organic pollutants

Contains no substance subject to REGULATION (EU) No 1005/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 September 2009 on substances that deplete the ozone layer.

Contains no substance subject to Regulation (EU) 2019/1148 of the European Parliament and of the Council of 20 June 2019 on the marketing and use of explosives precursors.

VOC content

: 180 g/l

Contains no substance subject to Regulation (EC) 273/2004 of the European Parliament and of the Council of 11 February 2004 on the manufacture and the placing on market of certain substances used in the illicit manufacture of narcotic drugs and psychotropic substances.

15.1.2. National regulations

No additional information available

15.2. Chemical safety assessment

No chemical safety assessment has been carried out

SECTION 16: Other information

Abbreviations and acr	onyms:
	onymo.
ADN	European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways
ADR	European Agreement concerning the International Carriage of Dangerous Goods by Road
ATE	Acute Toxicity Estimate
BCF	Bioconcentration factor
BLV	Biological limit value
BOD	Biochemical oxygen demand (BOD)
COD	Chemical oxygen demand (COD)
DMEL	Derived Minimal Effect level
DNEL	Derived-No Effect Level
EC-No.	European Community number
EC50	Median effective concentration
EN	European Standard
IARC	International Agency for Research on Cancer
ΙΑΤΑ	International Air Transport Association
IMDG	International Maritime Dangerous Goods
LC50	Median lethal concentration
LD50	Median lethal dose
LOAEL	Lowest Observed Adverse Effect Level
NOAEC	No-Observed Adverse Effect Concentration
NOAEL	No-Observed Adverse Effect Level

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Abbreviations and acr	onyms:
NOEC	No-Observed Effect Concentration
OECD	Organisation for Economic Co-operation and Development
OEL	Occupational Exposure Limit
PBT	Persistent Bioaccumulative Toxic
PNEC	Predicted No-Effect Concentration
RID	Regulations concerning the International Carriage of Dangerous Goods by Rail
SDS	Safety Data Sheet
STP	Sewage treatment plant
ThOD	Theoretical oxygen demand (ThOD)
TLM	Median Tolerance Limit
VOC	Volatile Organic Compounds
CAS-No.	Chemical Abstract Service number
N.O.S.	Not Otherwise Specified
vPvB	Very Persistent and Very Bioaccumulative
ED	Endocrine disrupting properties

Full text of H- and EUH	I-statements:
Acute Tox. 2 (Oral)	Acute toxicity (oral), Category 2
Acute Tox. 3 (Inhalation)	Acute toxicity (inhal.), Category 3
Acute Tox. 3 (Oral)	Acute toxicity (oral), Category 3
Acute Tox. 4 (Inhalation)	Acute toxicity (inhal.), Category 4
Acute Tox. 4 (Oral)	Acute toxicity (oral), Category 4
Aquatic Acute 1	Hazardous to the aquatic environment – Acute Hazard, Category 1
Aquatic Chronic 3	Hazardous to the aquatic environment – Chronic Hazard, Category 3
Asp. Tox. 1	Aspiration hazard, Category 1
Eye Dam. 1	Serious eye damage/eye irritation, Category 1
Eye Irrit. 2	Serious eye damage/eye irritation, Category 2
Flam. Liq. 3	Flammable liquids, Category 3
H226	Flammable liquid and vapour.
H300	Fatal if swallowed.
H301	Toxic if swallowed.
H302	Harmful if swallowed.
H304	May be fatal if swallowed and enters airways.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H318	Causes serious eye damage.
H319	Causes serious eye irritation.
H331	Toxic if inhaled.
H332	Harmful if inhaled.

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Full text of H- and EUF	I-statements:
H335	May cause respiratory irritation.
H400	Very toxic to aquatic life.
H412	Harmful to aquatic life with long lasting effects.
Skin Irrit. 2	Skin corrosion/irritation, Category 2
Skin Sens. 1	Skin sensitisation, Category 1
STOT SE 3	Specific target organ toxicity – Single exposure, Category 3, Respiratory tract irritation

Safety Data Sheet (SDS), EU

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

CATALYST COMP.B

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878 Issue date: 23/03/2012 Revision date: 16/03/2022 Supersedes version of: 23/08/2021 Version: 9.1

SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Mixture : CATALYST COMP.B Name UFI : K806-D15C-K00W-VC8M Product code 13363 : Type of product A Chemical anchoring application : Product group : Trade product 1.2. Relevant identified uses of the substance or mixture and uses advised against 1.2.1. Relevant identified uses Main use category : Industrial use, Professional use Use of the substance/mixture : A Chemical anchoring application Catalyst : Building and construction work Function or use category 1.2.2. Uses advised against No additional information available 1.3. Details of the supplier of the safety data sheet **Chemfix Products Limited**

A Briolf Group Company Ctra. N-II, km 706,5 17457 RIUDELLOTS DE LA SELVA (Girona) SPAIN T +44 (0)1924 453886/+34 872 729 763 - F +44 (0)1924 458995 sds@chemfix.co.uk - www.chemfix.co.uk

1.4. Emergency telephone number

Emergency number

: Emergency Number Association (EENA) : 112 / UK Manufacturer +44 (0)1924 431679

Country	Organisation/Company	Address	Emergency number	Comment
United Kingdom	National Poisons Information Service (Birmingham Centre) City Hospital	Dudley Road B18 7QH Birmingham	0344 892 0111	Only for healthcare professionals

SECTION 2: Hazards identification	
2.1. Classification of the substance or mixture	
Classification according to Regulation (EC) No. 1272/2008 [CLP]	
Serious eye damage/eye irritation, Category 2	H319
Skin sensitisation, Category 1	H317
Hazardous to the aquatic environment — Chronic Hazard, Category 3	H412
Full text of H- and EUH-statements: see section 16	

Adverse physicochemical, human health and environmental effects

May cause an allergic skin reaction. Causes serious eye irritation. Harmful to aquatic life with long lasting effects.
Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

2.2. Label elements

Labelling according to Regulation (EC) No. 1272/2008 [CLP]

GHS07
: Warning
: DIBENZOYL PEROXIDE.
: H317 - May cause an allergic skin reaction.
H319 - Causes serious eye irritation.
H412 - Harmful to aquatic life with long lasting effects.
: P261 - Avoid breathing dust/fume/gas/mist/vapours/spray.
P264 - Wash hands, forearms and face thoroughly after handling.
P272 - Contaminated work clothing should not be allowed out of the workplace.
P273 - Avoid release to the environment.
P280 - Wear protective clothing, eve protection, face protection.
P302+P352 - IF ON SKIN: Wash with plenty of soap and water.

2.3. Other hazards

Contains no PBT/vPvB substances ≥ 0.1% assessed in accordance with REACH Annex XIII

The mixture does not contain substance(s) included in the list established in accordance with Article 59(1) of REACH for having endocrine disrupting properties, or is not identified as having endocrine disrupting properties in accordance with the criteria set out in Commission Delegated Regulation (EU) 2017/2100 or Commission Regulation (EU) 2018/605 at a concentration equal to or greater than 0,1 %

SECTION 3: Composition/information on ingredients

3.1. Substances

Not applicable

3.2. Mixtures

Name	Product identifier	%	Classification according to Regulation (EC) No. 1272/2008 [CLP]
DIBENZOYL PEROXIDE.	CAS-No.: 94-36-0 EC-No.: 202-327-6 EC Index-No.: 617-008-00-0 REACH-no: 01-2119511472- 50	10 – 20	Org. Perox. B, H241 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Acute 1, H400 (M=10) Aquatic Chronic 1, H410 (M=10)
ETHYLENE GLYCOL. substance with a Community workplace exposure limit	CAS-No.: 107-21-1 EC-No.: 203-473-3 EC Index-No.: 603-027-00-1 REACH-no: 01-2119456816- 28	3 – 10	Acute Tox. 4 (Oral), H302 STOT RE 2, H373

Full text of H- and EUH-statements: see section 16

SECTION 4: First aid measures	
4.1. Description of first aid measures	
First-aid measures after inhalation First-aid measures after skin contact	 Remove person to fresh air and keep comfortable for breathing. Wash skin with plenty of water. Take off contaminated clothing. If skin irritation or rash occurs: Get medical advice/attention.

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

First-aid measures after eye contact First-aid measures after ingestion	 Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention. Call a poison center or a doctor if you feel unwell. 		
4.2. Most important symptoms and effects, both acute and delayed			
Symptoms/effects after skin contact Symptoms/effects after eye contact	May cause an allergic skin reaction.Eye irritation.		

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5: Firefighting measures			
5.1. Extinguishing media			
Suitable extinguishing media	: Water spray. Dry powder. Foam.		
5.2. Special hazards arising from the substance or mixture			
Hazardous decomposition products in case of fire	: Toxic fumes may be released.		
5.3. Advice for firefighters			
Protection during firefighting	: Do not attempt to take action without suitable protective equipment. Self-contained breathing apparatus. Complete protective clothing.		

SECTION 6: Accidental release measures	
6.1. Personal precautions, protective	equipment and emergency procedures
6.1.1. For non-emergency personnel	
Emergency procedures	: Ventilate spillage area. Avoid contact with skin and eyes. Avoid breathing dust/fume/gas/mist/vapours/spray.
6.1.2. For emergency responders	
Protective equipment	: Do not attempt to take action without suitable protective equipment. For further information refer to section 8: "Exposure controls/personal protection".
6.2. Environmental precautions	
Avoid release to the environment.	
6.3. Methods and material for contain	ment and cleaning up
Methods for cleaning up Other information	Mechanically recover the product.Dispose of materials or solid residues at an authorized site.
6.4. Reference to other sections	

For further information refer to section 13.

SECTION 7: Handling and storage	
7.1. Precautions for safe handling	
Precautions for safe handling	: Ensure good ventilation of the work station. Avoid contact with skin and eyes. Avoid breathing dust/fume/gas/mist/vapours/spray. Wear personal protective equipment.
Hygiene measures	: Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reuse. Do not eat, drink or smoke when using this product. Always wash hands after handling the product.

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

7.2. Conditions for safe storage, including any incompatibilities

Storage conditions

: Store in a well-ventilated place. Keep cool.

7.3. Specific end use(s)

No additional information available

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

8.1.1 National occupational exposure and biological limit values

DIBENZOYL PEROXIDE. (94-36-0)		
United Kingdom - Occupational Exposure Limits		
Local name	Dibenzoyl peroxide	
WEL TWA (OEL TWA) [1]	5 mg/m ³	
Regulatory reference	EH40/2005 (Fourth edition, 2020). HSE	
ETHYLENE GLYCOL. (107-21-1)		
EU - Indicative Occupational Exposure Limit (IOEL)		
Local name	Ethylene glycol	
IOEL TWA [ppm]	20 ppm	
IOEL STEL	104 mg/m³	
IOEL STEL [ppm]	40 ppm	
Remark	Skin	
Regulatory reference	COMMISSION DIRECTIVE 2000/39/EC	
United Kingdom - Occupational Exposure Limits		
Local name	Ethane-1,2-diol	
WEL TWA (OEL TWA) [1]	10 mg/m³ particulate 52 mg/m³ vapour	
WEL TWA (OEL TWA) [2]	20 ppm vapour	
WEL STEL (OEL STEL)	104 mg/m ³ vapour	
WEL STEL (OEL STEL) [ppm]	40 ppm vapour	
Remark	Sk (Can be absorbed through the skin. The assigned substances are those for which there are concerns that dermal absorption will lead to systemic toxicity)	
Regulatory reference	EH40/2005 (Fourth edition, 2020). HSE	

8.1.2. Recommended monitoring procedures

No additional information available

8.1.3. Air contaminants formed

No additional information available

8.1.4. DNEL and PNEC

No additional information available

8.1.5. Control banding

No additional information available

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

8.2. Exposure controls

8.2.1. Appropriate engineering controls

Appropriate engineering controls:

Ensure good ventilation of the work station.

8.2.2. Personal protection equipment

Personal protective equipment symbol(s):

8.2.2.1. Eye and face protection

Eye protection: Safety glasses

8.2.2.2. Skin protection

Skin and body protection:

Wear suitable protective clothing

Hand protection:

Chemical resistant gloves (according to European standard EN 374 or equivalent)

Hand protection					
Туре	Material	Permeation	Thickness (mm)	Penetration	Standard
Disposable gloves, Reusable gloves	Nitrile rubber (NBR), Butyl rubber, Viton® II	6 (> 480 minutes)	0.4	As the product is a preperation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.	EN ISO 374

8.2.2.3. Respiratory protection

Respiratory protection:

Wear suitable respiratory equipment in case of insufficient ventilation. EN141

8.2.2.4. Thermal hazards

No additional information available

8.2.3. Environmental exposure controls

Environmental exposure controls:

Avoid release to the environment.

SECTION 9: Physical and chemical properties			
9.1. Information on basic ph	vsical and chemical properties		
Physical state	: Solid		
Colour	: Beige. Black. white. Grey.		
Appearance	: Paste.		
Odour	: Barely perceptible odour.		
Odour threshold	: Not available		
Melting point	: 0 °C		

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Freezing point	:	Not available
Boiling point	:	Not available
Flammability	:	Not available
Oxidising properties	:	Not oxidising.
Explosive limits	:	Not applicable
Lower explosion limit	:	Not applicable
Upper explosion limit	:	Not applicable
Flash point	:	Not applicable
Auto-ignition temperature	:	Not applicable
Decomposition temperature	:	Not available
SADT	:	≈ 50 °C
рН	:	Not available
pH solution	:	Not available
Viscosity, kinematic	:	Not applicable
Solubility	:	Material insoluble in water
Partition coefficient n-octanol/water (Log Kow)	:	Not available
Vapour pressure	:	Not available
Vapour pressure at 50 °C	:	Not available
Density	:	Not available
Relative density	:	1.45 g/cm3
Relative vapour density at 20 °C	:	Not applicable
Particle size	:	Not available
Particle size distribution	:	Not available
Particle shape	:	Not available
Particle aspect ratio	:	Not available
Particle aggregation state	:	Not available
Particle agglomeration state	:	Not available
Particle specific surface area	:	Not available
Particle dustiness	:	Not available

9.2. Other information

9.2.1. Information with regard to physical hazard classes

No additional information available

9.2.2. Other safety characteristics

No additional information available

SECTION 10: Stability and reactivity

10.1. Reactivity

The product is non-reactive under normal conditions of use, storage and transport.

10.2. Chemical stability

Stable under normal conditions.

10.3. Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

10.4. Conditions to avoid

None under recommended storage and handling conditions (see section 7).

10.5. Incompatible materials

No additional information available

10.6. Hazardous decomposition products

Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

SECTION 11: Toxicological information	
11.1. Information on hazard classes as defined	I in Regulation (EC) No 1272/2008
Acute toxicity (oral):Acute toxicity (dermal):Acute toxicity (inhalation):	Not classified Not classified Not classified
DIBENZOYL PEROXIDE. (94-36-0)	
LD50 oral rat	> 2000 mg/kg
ETHYLENE GLYCOL. (107-21-1)	
LD50 oral rat	7712 mg/kg bodyweight Animal: rat
LD50 dermal	3500 mg/kg
Skin corrosion/irritation :	Not classified
Serious eye damage/irritation :	Causes serious eye irritation.
Respiratory or skin sensitisation :	May cause an allergic skin reaction.
Germ cell mutagenicity :	Not classified
Carcinogenicity :	Not classified
DIBENZOYL PEROXIDE. (94-36-0)	
IARC group	3 - Not classifiable
Reproductive toxicity :	Not classified
STOT-single exposure :	Not classified
STOT-repeated exposure :	Not classified
ETHYLENE GLYCOL. (107-21-1)	
NOAEL (oral, rat, 90 days)	150 mg/kg bodyweight/day
Aspiration hazard :	Not classified

11.2. Information on other hazards

No additional information available

SECTION 12: Ecological information

12.1. Toxicity	
Ecology - general : Hazardous to the aquatic environment, short-term : (acute) Hazardous to the aquatic environment, long-term : (chronic) Not rapidly degradable	Harmful to aquatic life with long lasting effects. Not classified Harmful to aquatic life with long lasting effects.
CATALYST COMP.B	
LC50 - Fish [1]	> 100 mg/l OECD TG 203
EC50 - Other aquatic organisms [1]	> 10 mg/l OECD TG 202
EC50 72h - Algae [1]	> 60 mg/l OECD TG 201
DIBENZOYL PEROXIDE. (94-36-0)	
LC50 - Fish [1]	0.0602 mg/l Test organisms (species): Oncorhynchus mykiss (previous name: Salmo gairdneri)
EC50 - Crustacea [1]	0.11 mg/l Test organisms (species): Daphnia magna
EC50 - Other aquatic organisms [1]	0.11 mg/l

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

DIBENZOYL PEROXIDE. (94-36-0)		
ErC50 algae	0.071 mg/l Source: ECHA	
ETHYLENE GLYCOL. (107-21-1)		
LC50 - Fish [1]	> 72860 mg/l Test organisms (species): Pimephales promelas	
EC50 - Crustacea [1]	> 100 mg/l Test organisms (species): Daphnia magna	
EC50 - Other aquatic organisms [1]	100 mg/l	
EC50 96h - Algae [1]	6500 – 13000 mg/l Source: ECHA	
NOEC (chronic)	≥ 1000 mg/l Test organisms (species): Americamysis bahia (previous name: Mysidopsis bahia) Duration: '23 d'	
NOEC chronic fish	15380 mg/l	
NOEC chronic crustacea	8590 mg/l	
12.2. Persistence and degradability		
No additional information available		
12.3. Bioaccumulative potential		
DIBENZOYL PEROXIDE. (94-36-0)		
Partition coefficient n-octanol/water (Log Pow)	3.46 Source: HSDB	
ETHYLENE GLYCOL. (107-21-1)		
Partition coefficient n-octanol/water (Log Pow)	-1.36	
12.4. Mobility in soil		
ETHYLENE GLYCOL. (107-21-1)		
Mobility in soil	0.2 Source: HSDB	
12.5. Results of PBT and vPvB assessment		
No additional information available		
12.6. Endocrine disrupting properties		
No additional information available		
12.7. Other adverse effects		
No additional information available		
SECTION 13: Disposal considerations		
13.1. Waste treatment methods		

Waste treatment methods

: Dispose of contents/container in accordance with licensed collector's sorting instructions.

In accordance with ADR / IMDG / IATA / ADN / RID				
ADR	IMDG	ΙΑΤΑ	ADN	RID
14.1. UN number or ID n	umber			
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

ADR	IMDG	ΙΑΤΑ	ADN	RID	
14.2. UN proper shippin	14.2. UN proper shipping name				
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated	
14.3. Transport hazard class(es)					
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated	
14.4. Packing group					
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated	
14.5. Environmental hazards					
Not regulated	Not regulated	Not regulated	Not regulated	Not regulated	
No supplementary information available					

14.6. Special precautions for user

Overland transport

Not regulated

Transport by sea

Not regulated

Air transport

Not regulated

Inland waterway transport

Not regulated

Rail transport

Not regulated

14.7. Maritime transport in bulk according to IMO instruments

Not applicable

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

15.1.1. EU-Regulations

Contains no REACH substances with Annex XVII restrictions

Contains no substance on the REACH candidate list

Contains no REACH Annex XIV substances

Contains no substance subject to Regulation (EU) No 649/2012 of the European Parliament and of the Council of 4 July 2012 concerning the export and import of hazardous chemicals.

Contains no substance subject to Regulation (EU) No 2019/1021 of the European Parliament and of the Council of 20 June 2019 on persistent organic pollutants

Contains no substance subject to REGULATION (EU) No 1005/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 September 2009 on substances that deplete the ozone layer.

Contains no substance subject to Regulation (EU) 2019/1148 of the European Parliament and of the Council of 20 June 2019 on the marketing and use of explosives precursors.

Contains no substance subject to Regulation (EC) 273/2004 of the European Parliament and of the Council of 11 February 2004 on the manufacture and the placing on market of certain substances used in the illicit manufacture of narcotic drugs and psychotropic substances.

15.1.2. National regulations

No additional information available

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

15.2. Chemical safety assessment

No chemical safety assessment has been carried out

SECTION 16: Other information		
Abbreviations and acronyms:		
ADN	European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways	
ADR	European Agreement concerning the International Carriage of Dangerous Goods by Road	
ATE	Acute Toxicity Estimate	
BCF	Bioconcentration factor	
BLV	Biological limit value	
BOD	Biochemical oxygen demand (BOD)	
COD	Chemical oxygen demand (COD)	
DMEL	Derived Minimal Effect level	
DNEL	Derived-No Effect Level	
EC-No.	European Community number	
EC50	Median effective concentration	
EN	European Standard	
IARC	International Agency for Research on Cancer	
ΙΑΤΑ	International Air Transport Association	
IMDG	International Maritime Dangerous Goods	
LC50	Median lethal concentration	
LD50	Median lethal dose	
LOAEL	Lowest Observed Adverse Effect Level	
NOAEC	No-Observed Adverse Effect Concentration	
NOAEL	No-Observed Adverse Effect Level	
NOEC	No-Observed Effect Concentration	
OECD	Organisation for Economic Co-operation and Development	
OEL	Occupational Exposure Limit	
РВТ	Persistent Bioaccumulative Toxic	
PNEC	Predicted No-Effect Concentration	
RID	Regulations concerning the International Carriage of Dangerous Goods by Rail	
SDS	Safety Data Sheet	
STP	Sewage treatment plant	
ThOD	Theoretical oxygen demand (ThOD)	
TLM	Median Tolerance Limit	
VOC	Volatile Organic Compounds	
CAS-No.	Chemical Abstract Service number	
N.O.S.	Not Otherwise Specified	
vPvB	Very Persistent and Very Bioaccumulative	

Safety Data Sheet

according to the REACH Regulation (EC) 1907/2006 amended by Regulation (EU) 2020/878

Very toxic to aquatic life.

Organic Peroxides, Type B

Skin sensitisation, Category 1

Abbreviations and acronyms:	
ED	Endocrine disrupting properties
Full text of H- and EUH-statements:	
Acute Tox. 4 (Oral)	Acute toxicity (oral), Category 4
Aquatic Acute 1	Hazardous to the aquatic environment — Acute Hazard, Category 1
Aquatic Chronic 1	Hazardous to the aquatic environment — Chronic Hazard, Category 1
Eye Irrit. 2	Serious eye damage/eye irritation, Category 2
H241	Heating may cause a fire or explosion.
H302	Harmful if swallowed.
H317	May cause an allergic skin reaction.
H319	Causes serious eye irritation.

The classification complies with

H373

H400

H410

H412

Org. Perox. B

Skin Sens. 1

STOT RE 2

: ATP 12

Specific target organ toxicity - Repeated exposure, Category 2

Very toxic to aquatic life with long lasting effects.

Harmful to aquatic life with long lasting effects.

May cause damage to organs through prolonged or repeated exposure.

Safety Data Sheet (SDS), EU

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product.

HELPING BRITISH MANUFACTURERS SELL MORE WITH ONE MARK

Registered Member of Made in Britain:

Chemfix Products Ltd

John Pearce Chief Executive, Made in Britain

Member No: 3166 Expiry Date: 11 AUG 2023

www.madeinbritain.org

Made in Britain Campaign Limited.

A not-for-profit private company limited by guarantee CRN:08566119. Registered office: Boston House, Grove Business Park, Wantage, OX12 9FF

Turkey Office

Ege Makine ve Teknik Malzeme San ve Tic.Ltd.Şti

Arapcami Mah.Tersane Cad.Bakır Sok.No:4 Karaköy-İstanbul

Phone: 0212 237 50 50 Fax: 0212 237 05 02 Mobile: 0532 347 84 01 okaylokum@egemakine.com info@egemakine.com Sales & Marketing

Chemfix GmbH Switzerland

Urs Joos : Phone +41 62 295 14 30 Mobile +41 79 464 86 00 Fax +41 62 295 15 30

email: chemfix@bluewin.ch web: www.chemfix.co.uk

Head Office

Chemfix Products Limited Mill Street East Dewsbury West Yorkshire WF12 9BQ United Kingdom

Phone +44 (0) 1924 453886 Fax +44 (0) 1924 431658

email: info@chemfix.co.uk

